1
|
Pan D, Wu H, Li JJ, Wang B, Jia AQ. Two cinnamoyl hydroxamates as potential quorum sensing inhibitors against Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1424038. [PMID: 39165918 PMCID: PMC11333444 DOI: 10.3389/fcimb.2024.1424038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Pseudomonas aeruginosa is a ubiquitous pathogen that causes various infectious diseases through the regulation of quorum sensing (QS). The strategy of interfering with the QS systems of P. aeruginosa, coupled with a reduction in the dosage of conventional antibiotics, presents a potential solution to treating infection and mitigating antibiotic resistance. In this study, seven cinnamoyl hydroxamates were synthesized to evaluate their inhibitory effects on QS of P. aeruginosa. Among these cinnamic acid derivatives, we found cinnamoyl hydroxamic acid (CHA) and 3-methoxy-cinnamoyl hydroxamic acid (MCHA) were the two most effective candidates. Furtherly, the effect of CHA and MCHA on the production of virulence factors and biofilm of P. aeruginosa were evaluated. Ultimately, our study may offer promising potential for treating P. aeruginosa infections and reducing its virulence. Methods The disc diffusion test were conducted to evaluate inhibitory effects on QS of seven cinnamoyl hydroxamates. The influence of CHA and MCHA on the production of virulence and flagellar motility of P. aeruginosa was furtherly explored. Scanning electron microscopy (SEM) experiment were conducted to evaluate the suppression of CHA and MCHA on the formed biofilm of P. aeruginosa. RT-qPCR was used to detect rhlI, lasA, lasB, rhlA, rhlB, and oprL genes in P. aeruginosa. In silico docking study was performed to explore the molecular mechanism of CHA and MCHA. The synergistic effects of CHA with gentamicin were detected on biofilm cell dispersal. Result After treatment of CHA or MCHA, the production of multiple virulence factors, including pyocyanin, proteases, rhamnolipid, and siderophore, and swimming and swarming motilities in P. aeruginosa were inhibited significantly. And our results showed CHA and MCHA could eliminate the formed biofilm of P. aeruginosa. RT-qPCR revealed that CHA and MCHA inhibited the expression of QS related genes in P. aeruginosa. Molecular docking indicated that CHA and MCHA primarily inhibited the RhlI/R system in P. aeruginosa by competing with the cognate signaling molecule C4-HSL.Additionally, CHA exhibited potent synergistic effects with gentamicin on biofilm cell dispersal. Discussion P. aeruginosa is one of the most clinically and epidemiologically important bacteria and a primary cause of catheter-related urinary tract infections and ventilator-associated pneumonia. This study aims to explore whether cinnamoyl hydroxamates have inhibitory effects on QS. And our results indicate that CHA and MCHA, as two novel QSIs, offer promising potential for treating P. aeruginosa infections and reducing its virulence.
Collapse
Affiliation(s)
- Deng Pan
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Hua Wu
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jun-Jian Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
2
|
Viana LPS, Naves GM, Medeiros IG, Guimarães AS, Sousa ES, Santos JCC, Freire NML, de Aquino TM, Modolo LV, de Fátima Â, da Silva CM. Synergizing structure and function: Cinnamoyl hydroxamic acids as potent urease inhibitors. Bioorg Chem 2024; 146:107247. [PMID: 38493635 DOI: 10.1016/j.bioorg.2024.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
The current investigation encompasses the structural planning, synthesis, and evaluation of the urease inhibitory activity of a series of molecular hybrids of hydroxamic acids and Michael acceptors, delineated from the structure of cinnamic acids. The synthesized compounds exhibited potent urease inhibitory effects, with IC50 values ranging from 3.8 to 12.8 µM. Kinetic experiments unveiled that the majority of the synthesized hybrids display characteristics of mixed inhibitors. Generally, derivatives containing electron-withdrawing groups on the aromatic ring demonstrate heightened activity, indicating that the increased electrophilicity of the beta carbon in the Michael Acceptor moiety positively influences the antiureolytic properties of this compounds class. Biophysical and theoretical investigations further corroborated the findings obtained from kinetic assays. These studies suggest that the hydroxamic acid core interacts with the urease active site, while the Michael acceptor moiety binds to one or more allosteric sites adjacent to the active site.
Collapse
Affiliation(s)
- Luciana P S Viana
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Giovanna M Naves
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isabela G Medeiros
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ari S Guimarães
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Emilly S Sousa
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Josué C C Santos
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Nathália M L Freire
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Thiago M de Aquino
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Luzia V Modolo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cleiton M da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Kirschner H, John M, Zhou T, Bachmann N, Schultz A, Hofmann E, Bandow JE, Scherkenbeck J, Metzler-Nolte N, Stoll R. Structural Insights into Antibacterial Payload Release from Gold Nanoparticles Bound to E. coli Peptide Deformylase. ChemMedChem 2024; 19:e202300538. [PMID: 38057137 DOI: 10.1002/cmdc.202300538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Indexed: 12/08/2023]
Abstract
The lack of new antibiotics and the rapidly rising number of pathogens resistant to antibiotics pose a serious problem to mankind. In bacteria, the cell membrane provides the first line of defence to antibiotics by preventing them from reaching their molecular target. To overcome this entrance barrier, it has been suggested[1] that small Gold-Nanoparticles (AuNP) could possibly function as drug delivery systems for antibiotic ligands. Using actinonin-based ligands, we provide here proof-of-principle of AuNP functionalisation, the capability to bind and inhibit the target protein of the ligand, and the possibility to selectively release the antimicrobial payload. To this end, we successfully synthesised AuNP coated with thio-functionalised actinonin and a derivative. Interactions between 15N-enriched His-peptide deformylase 1-147 from E. coli (His-ecPDF 1-147) and compound-coated AuNP were investigated via 2D 1H-15N-HSQC NMR spectra proving the direct binding to His-ecPDF 1-147. More importantly by adding dithiothreitol (DTT), we show that the derivative is successfully released from AuNPs while still bound to His-ecPDF 1-147. Our findings indicate that AuNP-conjugated ligands can address and bind intracellular target proteins. The system introduced here presents a new delivery platform for antibiotics and allows for the easy optimisation of ligand coated AuNPs.
Collapse
Affiliation(s)
- Hendrik Kirschner
- Biochemistry II, Biomolecular NMR Spectroscopy, RUBiospec|NMR and PhenomeCentre@RUBUAR, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Milena John
- Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Tianyi Zhou
- Bioorganic Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | - Nathalie Bachmann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - André Schultz
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Jürgen Scherkenbeck
- Bioorganic Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Raphael Stoll
- Biochemistry II, Biomolecular NMR Spectroscopy, RUBiospec|NMR and PhenomeCentre@RUBUAR, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
4
|
Tseng YW, Yang TJ, Hsu YL, Liu JH, Tseng YC, Hsu TW, Lu Y, Pan SH, Cheng TJR, Fang JM. Dual-targeting compounds possessing enhanced anticancer activity via microtubule disruption and histone deacetylase inhibition. Eur J Med Chem 2024; 265:116042. [PMID: 38141287 DOI: 10.1016/j.ejmech.2023.116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/25/2023]
Abstract
Dual-targeting anticancer agents 4-29 are designed by combining the structural features of purine-type microtubule-disrupting compounds and HDAC inhibitors. A library of the conjugate compounds connected by appropriate linkers was synthesized and found to possess HDACs inhibitory activity and render microtubule fragmentation by activating katanin, a microtubule-severing protein. Among various zinc-binding groups, hydroxamic acid shows the highest inhibitory activity of Class I HDACs, which was also reconfirmed by three-dimensional quantitative structure-activity relationship (3D-QSAR) pharmacophore prediction. The purine-hydroxamate conjugates exhibit enhanced cytotoxicity against MDA-MB231 breast cancer cells, H1975 lung cancer cells, and various clinical isolated non-small-cell lung cancer cells with different epidermal growth factor receptor (EGFR) status. Pyridyl substituents could be used to replace the C2 and N9 phenyl moieties in the purine-type scaffold, which can help to improve the solubility under physiological conditions, thus increasing cytotoxicity. In mice treated with the purine-hydroxamate conjugates, the tumor growth rate was significantly reduced without causing toxic effects. Our study demonstrates the potential of the dual-targeting purine-hydroxamate compounds for cancer monotherapy.
Collapse
Affiliation(s)
- Yu-Wei Tseng
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Tsung-Jung Yang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yuan-Ling Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Jyung-Hurng Liu
- Graduate Institute of Genomics and Bioinformatics, College of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yin-Chen Tseng
- The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Tse-Wei Hsu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yueh Lu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, 100, Taiwan; Doctoral Degree Program of Translational Medicine, National Taiwan University, Taipei, 100, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 100, Taiwan.
| | | | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan; The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
5
|
Ahmed RF, Mahmoud WR, Abdelgawad NM, Fouad MA, Said MF. Exploring novel anticancer pyrazole benzenesulfonamides featuring tail approach strategy as carbonic anhydrase inhibitors. Eur J Med Chem 2023; 261:115805. [PMID: 37748386 DOI: 10.1016/j.ejmech.2023.115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
This study aimed to design potent carbonic anhydrase inhibitors (CAIs) based on pyrazole benzenesulfonamide core. Nine series of substituted pyrazole benzenesulfonamide compounds were synthesized with variable groups like sulphamoyl group as in compounds 4a-e, its bioisosteric carboxylic acid as in compounds 5a-e and 8e, ethyl carboxylate ester as in compounds 6a-e and 9a-e, which were designed as potential prodrugs, isothiazole ring as in compound 7, hydrazide derivative 10e, hydroxamic acid derivatives 11a-e and semicarbazide derivatives 12a-c,e. All the synthesized compounds were investigated for their carbonic anhydrase (CA) inhibitory activity against two human CA isoforms hCA IX and hCA XII and compared to acetazolamide (AAZ). Also, the compounds were assessed for their anticancer activity against 60 cancer cell lines according to the US NCI protocol. Compounds 4b, 5b, 5d, 5e, 6b, 9b, 9e and 11b revealed significant inhibitory activity against both isoforms hCA IX and hCA XII, while 6e, 9d, 11d and 11e showed significant inhibitory activity against hCA XII only compared to acetazolamide as a reference. This would highlight these compounds as promising anticancer drugs. Moreover, compound 6e revealed a remarkable cytostatic activity against CNS cancer cell line (SF-539; TGI = 5.58 μM), renal cancer cell line (786-0; TGI = 4.32 μM) and breast cancer cell line (HS 578 T; TGI = 5.43 μM). Accordingly, compound 6e was subjected to cell cycle analysis and apoptotic assay on the abovementioned cell lines at the specified GI50 (0.45, 0.89 and 1.18 μM, respectively). Also, it revealed the increment of total apoptotic cells percentage in 786-0 (53.19%), SF-539 (46.11%) and HS 578 T (43.55%) relative to the control cells (2.07, 2.64 and 2.52%, respectively). In silico prediction of BBB permeability showed that most of the calculations for compound 6e resulted as BBB (+), which is required for a compound targeting CNS. Further, the interaction of the most active compounds with the key amino acids in the active sites of hCA IX and hCA XII was highlighted by molecular docking analysis.
Collapse
Affiliation(s)
- Rehab F Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Walaa R Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Nagwa M Abdelgawad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Marwa A Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt; Pharmaceutical Chemistry Department, School of Pharmacy, Newgiza University, Newgiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | - Mona F Said
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| |
Collapse
|
6
|
Continuous flow organocatalyzed methoxycarbonylation of benzyl alcohol derivatives with dimethyl carbonate. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00216-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Tomar R, Godhara M, Lalji RSK, Kumar S, Singh IK, Shankar B. Efficient synthesis and antibacterial activity of N-( o-benzyloxy/hydroxyphenyl) benzohydroxamic acids. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1968906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rashmi Tomar
- Department of Chemistry, M. S. J. College (University of Rajasthan), Bharatpur, India
| | - Madhu Godhara
- Department of Chemistry, M. S. J. College (University of Rajasthan), Bharatpur, India
| | | | - Sumit Kumar
- Molecular Biology Research Lab., Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Indrakant K. Singh
- Molecular Biology Research Lab., Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Bhawani Shankar
- Department of Chemistry, Deshbandhu College, University of Delhi, Delhi, India
| |
Collapse
|
8
|
Exploring novel capping framework: high substituent pyridine-hydroxamic acid derivatives as potential antiproliferative agents. ACTA ACUST UNITED AC 2021; 29:291-310. [PMID: 34297326 DOI: 10.1007/s40199-021-00406-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/26/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Histone deacetylases (HDACs) play a vital role in the epigenetic regulation of gene expression due to their overexpression in several cancer forms. Therefore, these enzymes are considered as a potential anticancer drug target. Different synthetic and natural structures have been studied as HDACs inhibitors; based on available structural design information, the capping group is important for the biological activity due to the different interactions in the active site entrance. The present study aimed to analyze high substituted pyridine as a capping group, which included carrying out the synthesis, antiproliferative activity analysis, and docking studies of these novel compounds. METHODS To achieve the synthesis of these derivatives, four reaction steps were performed, generating desired products 15a-k. Their effects on cell proliferation and gene expression of p21, cyclin D1, and p53 were determined using the sulphorhodamine B (SRB) method and quantitative real-time polymerase chain reaction. The HDAC1, HDAC6, and HDAC8 isoforms were used for performing docking experiments with our 15a-k products. RESULT The products 15a-k were obtained in overall yields of 40-71%. Compounds 15j and 15k showed the highest antiproliferative activity in the breast (BT-474 and MDA-MB-231) and prostate (PC3) cancer cell lines at a concentration of 10 µM. These compounds increased p21 mRNA levels and decreased cyclin D1 and p53 gene expression. The docking study showed an increment in the strength, and in the number of interactions performed by the capping moiety of the tested molecules compared with SAHA; interactions displayed are mainly van der Waals, π-stacking, and hydrogen bond. CONCLUSION The synthesized compounds 2-thiophene (15j) and 2-furan (15k) pyridine displayed cell growth inhibition, regulation of genes related to cell cycle progression in highly metastatic cancer cell lines. The molecular coupling analysis performed with HDAC1, HDAC6 and HDAC8 showed an increment in the number of interactions performed by the capping moiety and consequently in the strength of the capping group interaction.
Collapse
|
9
|
Kühl N, Leuthold MM, Behnam MAM, Klein CD. Beyond Basicity: Discovery of Nonbasic DENV-2 Protease Inhibitors with Potent Activity in Cell Culture. J Med Chem 2021; 64:4567-4587. [PMID: 33851839 DOI: 10.1021/acs.jmedchem.0c02042] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The viral serine protease NS2B-NS3 is one of the promising targets for drug discovery against dengue virus and other flaviviruses. The molecular recognition preferences of the protease favor basic, positively charged moieties as substrates and inhibitors, which leads to pharmacokinetic liabilities and off-target interactions with host proteases such as thrombin. We here present the results of efforts that were aimed specifically at the discovery and development of noncharged, small-molecular inhibitors of the flaviviral proteases. A key factor in the discovery of these compounds was a cellular reporter gene assay for the dengue protease, the DENV2proHeLa system. Extensive structure-activity relationship explorations resulted in novel benzamide derivatives with submicromolar activities in viral replication assays (EC50 0.24 μM), selectivity against off-target proteases, and negligible cytotoxicity. This structural class has increased drug-likeness compared to most of the previously published active-site-directed flaviviral protease inhibitors and includes promising candidates for further preclinical development.
Collapse
Affiliation(s)
- Nikos Kühl
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mila M Leuthold
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mira A M Behnam
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Zhang Q, Yang F, Liao S, Wang B, Li R, Dong Y, Zhou M, Yang Y, Xu G. Synthesis, Antibacterial Activity, and Structure–Activity Relationship of Fusaric Acid Analogs. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qing‐Yan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics Guiyang Guizhou 550004 China
| | - Fei‐Yu Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
| | - Shang‐Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
| | - Bing Wang
- School of Biology & Engineering Guizhou Medical University Guian New District Guizhou 550025 China
| | - Rui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
| | - Yong‐Xi Dong
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
| | - Meng Zhou
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics Guiyang Guizhou 550004 China
| | - Yuan‐Yong Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
| | - Guo‐Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
| |
Collapse
|
11
|
Meng H, Sun K, Xu Z, Tian L, Wang Y. P(III)‐Assisted Electrochemical Access to Ureas via in situ Generation of Isocyanates from Hydroxamic Acids. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Haiwen Meng
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Kunhui Sun
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Zhimin Xu
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| |
Collapse
|
12
|
Zhou M, Zheng H, Li Y, Huang H, Min X, Dai S, Zhou W, Chen Z, Xu G, Chen Y. Discovery of a novel AR/HDAC6 dual inhibitor for prostate cancer treatment. Aging (Albany NY) 2021; 13:6982-6998. [PMID: 33621955 PMCID: PMC7993727 DOI: 10.18632/aging.202554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022]
Abstract
Androgen receptor (AR) and histone deacetylase 6 (HDAC6) are important targets for cancer therapy. Given that both AR antagonists and HDAC6 inhibitors modulate AR signaling, a novel AR/HDAC6 dual inhibitor is investigated for its anticancer effects in castration-resistant prostate cancer (CRPC). Zeta55 inhibits nuclear translocation of AR and suppresses androgen-induced PSA and TMPRSS2 expression. Meanwhile, Zeta55 selectively inhibits HDAC6 activity, leading to AR degradation. Zeta55 reduces the growth of AR-overexpressing VCaP prostate cancer cells both in vitro and in a CRPC xenograft model. These results provide preclinical proof of principle for Zeta55 as a promising therapeutic in prostate cancer treatment.
Collapse
Affiliation(s)
- Maojun Zhou
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Center for Geriatrics Clinical Research, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hao Zheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yubin Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Center for Geriatrics Clinical Research, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Huichao Huang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Center for Geriatrics Clinical Research, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoli Min
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Center for Geriatrics Clinical Research, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shuyan Dai
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Center for Geriatrics Clinical Research, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | | | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Center for Geriatrics Clinical Research, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Guangyu Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Center for Geriatrics Clinical Research, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
13
|
Li JQ, Chen C, Yao M, Sun LY, Gao H, Chigan J, Yang KW. Hydroxamic acid with benzenesulfonamide: An effective scaffold for the development of broad-spectrum metallo-β-lactamase inhibitors. Bioorg Chem 2020; 105:104436. [PMID: 33171408 DOI: 10.1016/j.bioorg.2020.104436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/10/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
Given that β-lactam antibiotic resistance mediated by metallo-β-lactamases (MβLs) seriously threatens human health, we designed and synthesized nineteen hydroxamic acids with benzenesulfonamide, which exhibited broad-spectrum inhibition against four tested MβLs ImiS, L1, VIM-2 and IMP-1 (except 6, 13 and 18 on IMP-1, and 18 on VIM-2), with an IC50 value in the range of 0.6-9.4, 1.3-27.4, 5.4-43.7 and 5.2-49.7 µM, respectively, and restored antibacterial activity of both cefazolin and meropenem, resulting in a 2-32-fold reduction in MIC of the antibiotics. Compound 17 shows reversible competitive inhibition on L1 with a Ki value of 2.5 µM and significantly reduced the bacterial load in the spleen and liver of mice infected by E. coli expressing L1. The docking studies suggest that 17 tightly binds to the Zn(Ⅱ) of VIM-2 and CphA by the oxygen atoms of sulfonamide group, but coordinates with the Zn(II) of L1 through the oxygen atoms of hydroxamic acid group. These studies reveal that the hydroxamic acids with benzenesulfonamide are the potent scaffolds for the development of MβL inhibitors.
Collapse
Affiliation(s)
- Jia-Qi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Min Yao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Le-Yun Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Han Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jiazhu Chigan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|
14
|
Cotticelli MG, Forestieri R, Xia S, Joyasawal S, Lee T, Xu K, Smith III AB, Huryn DM, Wilson RB. Identification of a Novel Oleic Acid Analog with Protective Effects in Multiple Cellular Models of Friedreich Ataxia. ACS Chem Neurosci 2020; 11:2535-2542. [PMID: 32786299 DOI: 10.1021/acschemneuro.0c00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Friedreich ataxia (FRDA) is an inherited neurodegenerative disorder for which there is no cure or approved treatment. It is characterized by the loss or impaired activity of frataxin protein, which is involved in the biogenesis of iron-sulfur clusters. Our previous studies suggested that cell death in FRDA may involve ferroptosis, an iron-dependent form of cell death requiring lipid peroxidation. Based on reports that oleic acid acts as a ferroptosis inhibitor, we evaluated whether it, other fatty acids, and fatty acid derivatives could rescue viability in cellular models of FRDA. We identified a trifluoromethyl alcohol analog of oleic acid that was significantly more potent than oleic acid itself. Further evaluation indicated that the effects were stereoselective, although a specific molecular target has not yet been identified. This work provides a potential starting point for therapeutics to treat FRDA, as well as a valuable probe molecule to interrogate FRDA pathophysiology.
Collapse
Affiliation(s)
- M. Grazia Cotticelli
- Department of Pathology and Laboratory Medicine, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania 19104, United States
- The Penn Medicine/CHOP Center of Excellence for Friedreich’s Ataxia Research, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Roberto Forestieri
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Shujuan Xia
- Department of Pathology and Laboratory Medicine, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania 19104, United States
- The Penn Medicine/CHOP Center of Excellence for Friedreich’s Ataxia Research, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sipak Joyasawal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Taehee Lee
- Department of Pathology and Laboratory Medicine, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania 19104, United States
- The Penn Medicine/CHOP Center of Excellence for Friedreich’s Ataxia Research, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kexin Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Amos B. Smith III
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Donna M. Huryn
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Robert B. Wilson
- Department of Pathology and Laboratory Medicine, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania 19104, United States
- The Penn Medicine/CHOP Center of Excellence for Friedreich’s Ataxia Research, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
15
|
Karpinsky MM, Arnold AM, Lee J, Jasper G, Bockstaller MR, Sydlik SA, Zovinka EP. Acid Mine Drainage Remediation: Aluminum Chelation Using Functional Graphenic Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32642-32648. [PMID: 32559364 DOI: 10.1021/acsami.0c06958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acid mine drainage (AMD) is a pervasive source of metal pollution that severely impacts freshwater ecosystems and has a direct impact on human health. Conventional active and passive methods work very well for removing iron in AMD remediation, which is typically the highest metallic impurity. However, conventional passive remediation fails to remove all aluminum, which has severe ecological implications. Removal of aluminum ions using chelation, which traditionally uses small molecules that bind metals tightly for sequestration, holds promise. Yet, chelation strategies are limited because once introduced into surface water, small molecules are difficult to reclaim and often persist in the environment as pollutants. To address this, we have designed six unique scaffolds based on functional graphenic materials (FGMs) to create nonsoluble materials that could be placed at the end of a passive remediation process to remove persistent aluminum. When tested for efficacy, all six FGMs successfully demonstrated a reversible capacity to remove aluminum from acidic water, chelating up to 21 μg of Al/mg of FGM. Furthermore, when they were exposed to E. coli as an approximation for environmental compatibility, viability was unaffected, even at high concentrations, suggesting these FGMs are nontoxic and viable candidates for passive chelation-based remediation.
Collapse
Affiliation(s)
- Michelle M Karpinsky
- Department of Chemistry, Saint Francis University, Loretto, Pennsylvania 15940, United States
| | - Anne M Arnold
- Chemical and Biological Signature Sciences Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jaejun Lee
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Genell Jasper
- Department of Chemistry, Saint Francis University, Loretto, Pennsylvania 15940, United States
| | - Michael R Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Edward P Zovinka
- Department of Chemistry, Saint Francis University, Loretto, Pennsylvania 15940, United States
| |
Collapse
|
16
|
Akinremi CA, Rashid S, Upreti PD, Chi GT, Huddersman K. Regeneration of a deactivated surface functionalised polyacrylonitrile supported Fenton catalyst for use in wastewater treatment. RSC Adv 2020; 10:12941-12952. [PMID: 35492088 PMCID: PMC9051464 DOI: 10.1039/d0ra00520g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/23/2020] [Indexed: 11/21/2022] Open
Abstract
Successful attempts to regenerate a used surface functionalised nanocoated polyacrylonitrile (PAN) catalyst are described here. During use in wastewater treatment, the novel Fenton catalyst (F1) is deactivated due to iron loss caused by acid hydrolysis. In this study the deactivated catalyst (D1) is subjected to reactions with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), followed by reactions with either hydroxylamine to give sample T1 or hydroxylamine and hydrazine to give sample T2. The samples were then impregnated with iron(iii) salt to give either Fe-T1 or Fe-T2. The catalysts were characterized by Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR), Atomic Absorption (AA) and UV/VIS spectroscopies, Scanning Electron Microscopy (SEM) with energy-dispersive X-ray (EDX) spectroscopy and Electron Spin Resonance (ESR) spectroscopy. The iron on the regenerated catalyst was found to be in complexed form but had deposited iron oxide species as well. The catalysts were tested in batch mode and compared with the fresh modified PAN catalyst in the degradation of the dye Reactive Orange 16 (RO-16) with analysis by UV/VIS spectroscopy. The reactivated catalysts prepared with EDC were found to be more active and faster (as measured at 120 min) in decolourising RO-16 than the fresh catalytic mesh but also with a higher degree of Fe leaching (0.85% loss of iron per gram of Fe-T2 catalyst over 6 cycles compared to 0.32% loss of Fe per gram of F1 catalyst over 6 cycles). This leaching was found not to contribute significantly to degradation of the dye and the preliminary results suggest that the regime can be used for catalyst regeneration encouraging industrial uptake. Successful attempts to regenerate a used surface functionalised nanocoated polyacrylonitrile (PAN) catalyst are described here.![]()
Collapse
Affiliation(s)
- Caroline A Akinremi
- School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University The Gateway Leicester LE1 9BH UK .,Department of Chemistry, Federal University of Agriculture Abeokuta Nigeria
| | - Sanaa Rashid
- School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University The Gateway Leicester LE1 9BH UK
| | - Pushpa D Upreti
- School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University The Gateway Leicester LE1 9BH UK
| | - George T Chi
- School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University The Gateway Leicester LE1 9BH UK
| | - Katherine Huddersman
- School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University The Gateway Leicester LE1 9BH UK
| |
Collapse
|
17
|
Huang MR, Hsu YL, Lin TC, Cheng TJ, Li LW, Tseng YW, Chou YS, Liu JH, Pan SH, Fang JM, Wong CH. Structure-guided development of purine amide, hydroxamate, and amidoxime for the inhibition of non-small cell lung cancer. Eur J Med Chem 2019; 181:111551. [DOI: 10.1016/j.ejmech.2019.07.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/07/2019] [Accepted: 07/19/2019] [Indexed: 01/10/2023]
|
18
|
El Kayal WM, Shtrygol SY, Zalevskyi SV, Shark AA, Tsyvunin VV, Kovalenko SM, Bunyatyan ND, Perekhoda LO, Severina HI, Georgiyants VA. Synthesis, in vivo and in silico anticonvulsant activity studies of new derivatives of 2-(2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)acetamide. Eur J Med Chem 2019; 180:134-142. [PMID: 31302446 DOI: 10.1016/j.ejmech.2019.06.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 11/19/2022]
Abstract
In order to expand the arsenal of biologically active substances of anticonvulsive action by the interaction of 2-(2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)acetic acid with the corresponding amines in the presence of N,N'-carbonyldiimidazole in the dioxane medium, a systematic series of 2-(2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)-N-R-acetamides was obtained. A novel approach to synthesis of the key intermediate - 2-(2,4-dioxo-1,4-dihydro-quinazolin-3(2H)-yl)acetic acid was developed. The structure and purity of the resulting substances was confirmed by elemental analysis, 1H NMR, 13C NMR spectroscopy and LC/MS. Based on the results of docking studies using SCIGRESS software, selected compounds with the best affinity for anticonvulsant protein biomes (PDB codes: 4COF, 3F8E and 1 EOU) are promising for experimental studies of anticonvulsant activity. A comparative analysis of the results of molecular docking and in vivo results suggests that there is a positive correlation between scoring protein inhibition and experimental data. Pharmacological studies have revealed the leader compound 2-(2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)-N-[(2,4-dichlorophenyl)methyl]acet-amide, which improved all the experimental convulsive syndrome rates in mice without motor coordination impairment and may be recommended for further research. The lowest values of the scoring function of the ligand-peptide interaction are obtained for the synthesized compound and сarbonic anhydrase II (gene name CA2) (PDB code 1 EOU), so its inhibition is proposed by us as the most probable mechanism of the anticonvulsive effect of the leader compound.
Collapse
Affiliation(s)
| | - Sergiy Yu Shtrygol
- National University of Pharmacy, 53, Pushkinskaya st., Kharkiv, 61002, Ukraine
| | - Sergiy V Zalevskyi
- National University of Pharmacy, 53, Pushkinskaya st., Kharkiv, 61002, Ukraine
| | - Amjad Abu Shark
- National University of Pharmacy, 53, Pushkinskaya st., Kharkiv, 61002, Ukraine
| | - Vadim V Tsyvunin
- National University of Pharmacy, 53, Pushkinskaya st., Kharkiv, 61002, Ukraine
| | - Sergiy M Kovalenko
- V.N.Karazin Kharkiv National University, 4 Svobody sq., Kharkiv, 61077, Ukraine; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 8 Trubeckaya, Moscow, 119991, Russia
| | - Natalya D Bunyatyan
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 8 Trubeckaya, Moscow, 119991, Russia; Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products", Petrovsky boulevard 8. bld. 2, Moscow, 127051, Russia
| | - Lina O Perekhoda
- National University of Pharmacy, 53, Pushkinskaya st., Kharkiv, 61002, Ukraine
| | - Hanna I Severina
- National University of Pharmacy, 53, Pushkinskaya st., Kharkiv, 61002, Ukraine
| | | |
Collapse
|
19
|
Antoszczak M, Steverding D, Sulik M, Janczak J, Huczyński A. Anti-trypanosomal activity of doubly modified salinomycin derivatives. Eur J Med Chem 2019; 173:90-98. [DOI: 10.1016/j.ejmech.2019.03.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 01/21/2023]
|
20
|
Hoang GL, Søholm Halskov K, Ellman JA. Synthesis of Azolo[1,3,5]triazines via Rhodium(III)-Catalyzed Annulation of N-Azolo Imines and Dioxazolones. J Org Chem 2018; 83:9522-9529. [PMID: 29947517 DOI: 10.1021/acs.joc.8b01249] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A wide range of azolo[1,3,5]triazines were obtained by Rh(III)-catalyzed annulation of N-azolo imines and dioxazolones. The reaction proceeds by the first catalytic C-H amidation of an imidoyl C-H bond followed by cyclodehydration. Good yields were obtained for N-azolo imines derived from aminoazoles and aromatic and heteroaromatic aldehydes. A range of dioxazolone amidating reagents were employed to introduce aryl, heteroaryl, and alkyl substituents. The reaction was also performed with a benchtop setup at 1 mmol scale using microwave heating.
Collapse
Affiliation(s)
- Gia L Hoang
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Kim Søholm Halskov
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Jonathan A Ellman
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| |
Collapse
|
21
|
Li P, Ma N, Wang Z, Dai Q, Hu C. Base-Mediated Intramolecular Decarboxylative Synthesis of Alkylamines from Alkanoyloxycarbamates. J Org Chem 2018; 83:8233-8240. [DOI: 10.1021/acs.joc.8b00970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peihe Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Nuannuan Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zheng Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qipu Dai
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Changwen Hu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
22
|
Hong SY, Park Y, Hwang Y, Kim YB, Baik MH, Chang S. Selective formation of γ-lactams via C-H amidation enabled by tailored iridium catalysts. Science 2018; 359:1016-1021. [PMID: 29496875 DOI: 10.1126/science.aap7503] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/01/2017] [Accepted: 01/05/2018] [Indexed: 01/14/2023]
Abstract
Intramolecular insertion of metal nitrenes into carbon-hydrogen bonds to form γ-lactam rings has traditionally been hindered by competing isocyanate formation. We report the application of theory and mechanism studies to optimize a class of pentamethylcyclopentadienyl iridium(III) catalysts for suppression of this competing pathway. Modulation of the stereoelectronic properties of the auxiliary bidentate ligands to be more electron-donating was suggested by density functional theory calculations to lower the C-H insertion barrier favoring the desired reaction. These catalysts transform a wide range of 1,4,2-dioxazol-5-ones, carbonylnitrene precursors easily accessible from carboxylic acids, into the corresponding γ-lactams via sp3 and sp2 C-H amidation with exceptional selectivity. The power of this method was further demonstrated by the successful late-stage functionalization of amino acid derivatives and other bioactive molecules.
Collapse
Affiliation(s)
- Seung Youn Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea, and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Yoonsu Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea, and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Yeongyu Hwang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea, and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Yeong Bum Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea, and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea, and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea.
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea, and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea.
| |
Collapse
|
23
|
Spirohydantoins and 1,2,4-triazole-3-carboxamide derivatives as inhibitors of histone deacetylase: Design, synthesis, and biological evaluation. Eur J Med Chem 2018; 146:79-92. [DOI: 10.1016/j.ejmech.2018.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 11/30/2022]
|
24
|
Synthesis and biological activity of salinomycin-hydroxamic acid conjugates. Bioorg Med Chem Lett 2017; 27:1624-1626. [DOI: 10.1016/j.bmcl.2017.01.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/23/2016] [Accepted: 01/26/2017] [Indexed: 12/16/2022]
|
25
|
One-pot synthesis of primary amines from carboxylic acids through rearrangement of in situ generated hydroxamic acid derivatives. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.10.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Mocci R, Luca LD, Delogu F, Porcheddu A. An Environmentally Sustainable Mechanochemical Route to Hydroxamic Acid Derivatives. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600350] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rita Mocci
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche; SS 554 bivio per Sestu 09042 Monserrato (Ca Italy
| | - Lidia De Luca
- Università degli Studi di Sassari, Dipartimento di Chimica e Farmacia; via Vienna 2 07100 Sassari Italy
| | - Francesco Delogu
- Università degli Studi di Cagliari, Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali; via Marengo 2 09123 Cagliari Italy
| | - Andrea Porcheddu
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche; SS 554 bivio per Sestu 09042 Monserrato (Ca Italy
| |
Collapse
|
27
|
Gonçalves BMF, Salvador JAR, Santos DSM, Marín S, Cascante M. Design, synthesis, and biological evaluation of novel asiatic acid derivatives as potential anticancer agents. RSC Adv 2016. [DOI: 10.1039/c6ra04597a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
28
|
Adewuyi A, Otuechere CA, Oteglolade ZO, Bankole O, Unuabonah EI. Evaluation of the safety profile and antioxidant activity of fatty hydroxamic acid from underutilized seed oil of Cyperus esculentus. JOURNAL OF ACUTE DISEASE 2015. [DOI: 10.1016/j.joad.2015.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
29
|
Decroos C, Christianson DW. Design, Synthesis, and Evaluation of Polyamine Deacetylase Inhibitors, and High-Resolution Crystal Structures of Their Complexes with Acetylpolyamine Amidohydrolase. Biochemistry 2015. [PMID: 26200446 DOI: 10.1021/acs.biochem.5b00536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polyamines are essential aliphatic polycations that bind to nucleic acids and accordingly are involved in a variety of cellular processes. Polyamine function can be regulated by acetylation and deacetylation, just as histone function can be regulated by lysine acetylation and deacetylation. Acetylpolyamine amidohydrolase (APAH) from Mycoplana ramosa is a zinc-dependent polyamine deacetylase that shares approximately 20% amino acid sequence identity with human histone deacetylases. We now report the X-ray crystal structures of APAH-inhibitor complexes in a new and superior crystal form that diffracts to very high resolution (1.1-1.4 Å). Inhibitors include previously synthesized analogues of N(8)-acetylspermidine bearing trifluoromethylketone, thiol, and hydroxamate zinc-binding groups [Decroos, C., Bowman, C. M., and Christianson, D. W. (2013) Bioorg. Med. Chem. 21, 4530], and newly synthesized hydroxamate analogues of shorter, monoacetylated diamines, the most potent of which is the hydroxamate analogue of N-acetylcadaverine (IC50 = 68 nM). The high-resolution crystal structures of APAH-inhibitor complexes provide key inferences about the inhibition and catalytic mechanism of zinc-dependent deacetylases. For example, the trifluoromethylketone analogue of N(8)-acetylspermidine binds as a tetrahedral gem-diol that mimics the tetrahedral intermediate and its flanking transition states in catalysis. Surprisingly, this compound is also a potent inhibitor of human histone deacetylase 8 with an IC50 of 260 nM. Crystal structures of APAH-inhibitor complexes are determined at the highest resolution of any currently existing zinc deacetylase structure and thus represent the most accurate reference points for understanding structure-mechanism and structure-inhibition relationships in this critically important enzyme family.
Collapse
Affiliation(s)
- Christophe Decroos
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
30
|
Das R, Kapur M. Fujiwara-Moritani Reaction of Weinreb Amides using a Ruthenium-Catalyzed C−H Functionalization Reaction. Chem Asian J 2015; 10:1505-12. [DOI: 10.1002/asia.201500343] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Riki Das
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal, Academic Building II; Indore Bypass Road, Bhauri Bhopal 462066, MP India
| | - Manmohan Kapur
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal, Academic Building II; Indore Bypass Road, Bhauri Bhopal 462066, MP India
| |
Collapse
|
31
|
Ai T, Xu Y, Qiu L, Geraghty RJ, Chen L. Hydroxamic Acids Block Replication of Hepatitis C Virus. J Med Chem 2014; 58:785-800. [DOI: 10.1021/jm501330g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Teng Ai
- Center for Drug Design, Academic
Health Center, University of Minnesota, 516 Delaware Street S.E., Minneapolis, Minnesota 55455, United States
| | - Yanli Xu
- Center for Drug Design, Academic
Health Center, University of Minnesota, 516 Delaware Street S.E., Minneapolis, Minnesota 55455, United States
| | - Li Qiu
- Center for Drug Design, Academic
Health Center, University of Minnesota, 516 Delaware Street S.E., Minneapolis, Minnesota 55455, United States
| | - Robert J. Geraghty
- Center for Drug Design, Academic
Health Center, University of Minnesota, 516 Delaware Street S.E., Minneapolis, Minnesota 55455, United States
| | - Liqiang Chen
- Center for Drug Design, Academic
Health Center, University of Minnesota, 516 Delaware Street S.E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
32
|
Mistry SN, Drinkwater N, Ruggeri C, Sivaraman KK, Loganathan S, Fletcher S, Drag M, Paiardini A, Avery VM, Scammells PJ, McGowan S. Two-Pronged Attack: Dual Inhibition of Plasmodium falciparum M1 and M17 Metalloaminopeptidases by a Novel Series of Hydroxamic Acid-Based Inhibitors. J Med Chem 2014; 57:9168-83. [DOI: 10.1021/jm501323a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shailesh N. Mistry
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nyssa Drinkwater
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Chiara Ruggeri
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Dipartmento
di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, 00185 Roma, Italy
| | - Komagal Kannan Sivaraman
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Sasdekumar Loganathan
- Discovery
Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Sabine Fletcher
- Discovery
Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Marcin Drag
- Division
of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Alessandro Paiardini
- Dipartmento
di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, 00185 Roma, Italy
| | - Vicky M. Avery
- Discovery
Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Peter J. Scammells
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sheena McGowan
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
33
|
Kozlov MV, Kleymenova AA, Romanova LI, Konduktorov KA, Smirnova OA, Prasolov VS, Kochetkov SN. Benzohydroxamic acids as potent and selective anti-HCV agents. Bioorg Med Chem Lett 2013; 23:5936-40. [PMID: 24035094 DOI: 10.1016/j.bmcl.2013.08.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/14/2013] [Accepted: 08/18/2013] [Indexed: 01/30/2023]
Abstract
A diverse collection of 40 derivatives of benzohydroxamic acid (BHAs) of various structural groups were synthesized and tested against hepatitis C virus (HCV) in full-genome replicon assay. Some of these compounds demonstrated an exceptional activity, suppressing viral replication at sub-micromolar concentrations. The compounds were inactive against key viral enzymes NS3, and NS5B in vitro assays, suggesting host cell inhibition target(s). The testing results were consistent with metal coordination by the BHAs hydroxamic group in complex with a target(s). Remarkably, this class of compounds did not suppress poliomyelitis virus (PV) propagation in RD cells indicating a specific antiviral activity of BHAs against HCV.
Collapse
Affiliation(s)
- Maxim V Kozlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
34
|
Synthesis and evaluation of N⁸-acetylspermidine analogues as inhibitors of bacterial acetylpolyamine amidohydrolase. Bioorg Med Chem 2013; 21:4530-40. [PMID: 23790721 DOI: 10.1016/j.bmc.2013.05.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/14/2013] [Accepted: 05/18/2013] [Indexed: 12/23/2022]
Abstract
Polyamines are small essential polycations involved in many biological processes. Enzymes of polyamine metabolism have been extensively studied and are attractive drug targets. Nevertheless, the reversible acetylation of polyamines remains poorly understood. Although eukaryotic N(8)-acetylspermidine deacetylase activity has already been detected and studied, the specific enzyme responsible for this activity has not yet been identified. However, a zinc deacetylase from Mycoplana ramosa, acetylpolyamine amidohydrolase (APAH), has been reported to use various acetylpolyamines as substrates. The recently solved crystal structure of this polyamine deacetylase revealed the formation of an 'L'-shaped active site tunnel at the dimer interface, with ideal dimensions and electrostatic properties for accommodating narrow, flexible, cationic polyamine substrates. Here, we report the design, synthesis, and evaluation of N(8)-acetylspermidine analogues bearing different zinc binding groups as potential inhibitors of APAH. Most of the synthesized compounds exhibit modest potency, with IC₅₀ values in the mid-micromolar range, but compounds bearing hydroxamate or trifluoromethylketone zinc binding groups exhibit enhanced inhibitory potency in the mid-nanomolar range. These inhibitors will enable future explorations of acetylpolyamine function in both prokaryotes and eukaryotes.
Collapse
|
35
|
Kozlov MV, Kleymenova AA, Konduktorov KA, Kochetkov SN. A new synthesis of 6-N-hydroxy-4-(2-methyl-l,2,3,4-tetrahydro-pyrido[4,3-b]indol-5-ylmethyl)benzamide, tubastatin a, a highly selective inhibitor of histone deacetylase. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013; 39:117-20. [DOI: 10.1134/s1068162012060076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Yoganathan S, Miller SJ. N-Methylimidazole-catalyzed synthesis of carbamates from hydroxamic acids via the Lossen rearrangement. Org Lett 2013; 15:602-5. [PMID: 23327543 DOI: 10.1021/ol303424b] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient, one-pot, N-methylimidazole (NMI) accelerated synthesis of aromatic and aliphatic carbamates via the Lossen rearrangement is reported. NMI is a catalyst for the conversion of isocyanate intermediates to the carbamates. Moreover, the utility of arylsulfonyl chloride in combination with NMI minimizes the formation of often-observed hydroxamate-isocyanate dimers during the sequence. Under the present conditions, lowering of temperatures is also possible, enabling a mild protocol.
Collapse
Affiliation(s)
- Sabesan Yoganathan
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
37
|
Šilhár P, Silvaggi NR, Pellett S, Čapková K, Johnson EA, Allen KN, Janda KD. Evaluation of adamantane hydroxamates as botulinum neurotoxin inhibitors: synthesis, crystallography, modeling, kinetic and cellular based studies. Bioorg Med Chem 2012; 21:1344-8. [PMID: 23340139 DOI: 10.1016/j.bmc.2012.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/01/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
Botulinum neurotoxins (BoNTs) are the most lethal biotoxins known to mankind and are responsible for the neuroparalytic disease botulism. Current treatments for botulinum poisoning are all protein based and thus have a limited window of treatment opportunity. Inhibition of the BoNT light chain protease (LC) has emerged as a therapeutic strategy for the treatment of botulism as it may provide an effective post exposure remedy. Using a combination of crystallographic and modeling studies a series of hydroxamates derived from 1-adamantylacetohydroxamic acid (3a) were prepared. From this group of compounds, an improved potency of about 17-fold was observed for two derivatives. Detailed mechanistic studies on these structures revealed a competitive inhibition model, with a K(i)=27 nM, which makes these compounds some of the most potent small molecule, non-peptidic BoNT/A LC inhibitors reported to date.
Collapse
Affiliation(s)
- Peter Šilhár
- Department of Chemistry, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|