1
|
Zhang X, Wang J, Xu J, Pang Q, Liu D, Zhang G. Pd(II)-Catalyzed Cascade Annulation of o-Aminobenzoic Acids with CO, Amines, and Aldehydes to N3-/ N1, N3-Substituted 2,3-Dihydroquinazolin-4(1 H)-ones. J Org Chem 2023; 88:10266-10276. [PMID: 37418638 DOI: 10.1021/acs.joc.3c00802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
The unprecedented Pd(II)-catalyzed cascade annulation of o-aminobenzoic acids with CO, amines, and aldehydes has been developed. This protocol provides an efficient and concise approach to selective construction of N3-substituted and N1,N3-disubstituted 2,3-dihydroquinazolin-4(1H)-ones mostly in moderate to excellent yields from simple and easily available starting materials under mild conditions featured with low cost, high step economy, broad substrate scope, and good product diversity.
Collapse
Affiliation(s)
- Xiaopeng Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jinjun Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jiahui Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Qiuyang Pang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Dan Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guisheng Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Rajput CS, Srivastava S, Kumar A, Pathak A. Mukaiyama’s reagent promoted mild protocol for one-pot metal-free synthesis of dihydro quinazolinones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Photooxidation of 2,3-dihydroquinazolin-4(1H)-ones: retention or elimination of 2-substitution. Mol Divers 2021; 26:191-203. [PMID: 33449248 DOI: 10.1007/s11030-020-10174-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
A series of mono and disubstituted 2,3-dihydroquinazolin-4(1H)-ones (DHQZs) were synthesized and the electronic and steric effects of the C2- and N3-substitutions on the retention or elimination of the C2-substitution by exposing them to the ultraviolet light were investigated. Electron transfer from photo-excited dihydroquinazolinones to chloroform solvent is proposed, in which both lone pairs on the N1- and N3-atoms can be involved in this process. The extent of the N1- and N3-atoms contributions in this electron-transfer process and also the retention or elimination of the C2-substitutions are dependent on the nature and steric hindrance of both C2- and N3-substitutions. The experimental results are supported by the computational studies. Photoinduced electron-transfer reaction of a series of mono and disubstituted 2,3- dihydroquinazolin-4(1H)-ones was investigated.
Collapse
|
4
|
Alipour M, Hossaini Z, Khaksar S, Rostami-Charati F. 3,5-Bis(trifluoromethyl) Phenylammonium triflate(BFPAT) as a Novel Organocatalyst for the Efficient Synthesis of 2,3-dihydroquinazolin-4(1H)-one Derivatives. Curr Org Synth 2020; 17:40-45. [PMID: 32103716 DOI: 10.2174/1570179417666191218115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022]
Abstract
AIMS AND OBJECTIVES A one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives by threecomponent cyclo-condensation of isatoic anhydride, aldehydes and amine or ammonium acetate has been developed using 3,5-Bis(trifluoromethyl) phenylammonium triflate (BFPAT) as a new organocatalyst. MATERIALS AND METHODS All of the obtained products are known compounds and identified by IR, 1HNMR, 13CNMR and melting points. RESULTS A wide variety of structurally different aldehydes reacted easily and rapidly to result in the relating 2,3-dihydroquinazolin-4(1H)-ones in good to excellent yield. CONCLUSION We have demonstrated an extremely effective and new process for synthesizing 2,3- dihydroquinazolin-4(1H)-ones employing BFPAT as a novel organocatalyst in one-pot fashion.
Collapse
Affiliation(s)
- Mandana Alipour
- Department of Chemistry, Islamic Azad University, Qaemshahr Branch, Qaemshahr, Iran
| | | | - Samad Khaksar
- Department of Chemistry, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran.,Department of Chemistry, School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Faramarz Rostami-Charati
- Department of Chemistry, Faculty of Science, Gonbad Kavous University, P.O. Box 163, Gonbad Kavous, Iran.,Research Center for Conservation of Culture Relics (RCCCR), Research Institute of Cultural Heritage & Tourism, Tehran, Iran
| |
Collapse
|
5
|
Tashrifi Z, Mohammadi-Khanaposhtani M, Biglar M, Larijani B, Mahdavi M. Isatoic Anhydride: A Fascinating and Basic Molecule for the Synthesis of Substituted Quinazolinones and Benzo di/triazepines. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190701142930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article is focused on the synthesis of compounds with quinazolinones and benzo di/triazepine scaffolds. These invaluable derivatives are of great interest in medicinal and pharmaceutical studies because of their important biological properties. Quinazolinones have diverse applications due to their antibacterial, analgesic, antiinflammatory, antifungal, antimalarial, antihypertensive, CNS depressant, anticonvulsant, antihistaminic, antiparkinsonism, antiviraland and anticancer activities. On the other hand, pharmacological properties of benzodiazepines include antianxiety, anticancer, anticonvulsant, antagonists of cholecystokinin receptors (CCK), antileishmanial, sleep-inducing muscle relaxant and several other useful and interesting properties. As an example, three main categories of drugs, namely anxiolytics, sedative hypnotics (sleep inducers) and anticonvulsants are constructed by 1,4-benzodiazepines. Finally, benzotriazepines are believed to possess various pharmacological properties such as antipsychotic and antitumor activities. Hence, this review is divided into three major sections, considering quinazolinones, benzodiazepines and benzotriazepines. In the first section, we take a brief look at various approaches towards synthesis of substituted quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones. Also in this section, we try to give an overview of the synthetic routes and strategies recently reported for the generation of various classes of substituted 4(3H)-quinazolinones and 2,3-dihydroquinazolin-4(1H)-ones. Accordingly, quinazolin-4(3H)-ones, were subdivided into three major classes: 2-substituted, 3-substituted and 2,3-disubstituted-quinazolinones. 2,3- dihydroquinazolin-4(1H)-ones also were subdivided into six sub-categories: 2-monosubstituted, 2,2- disubstituted, 2,3-disubstituted, 1,2,3-trisubstituted, 2,2,3-trisubstituted 2,3-dihydroquinazolin-4(1H)-ones and boron-containing quinazoline-4(1H)-ones. In the other two sections, we cover the literature related to synthesis of benzo di/triazepine. The most recent developments are highlighted with a special emphasis on new synthetic routes based on isatoic anhydride as starting material.
Collapse
Affiliation(s)
- Zahra Tashrifi
- Department of Chemistry, University of Guilan, Rasht PO Box 41335-1914, Iran
| | | | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Badolato M, Aiello F, Neamati N. 2,3-Dihydroquinazolin-4(1 H)-one as a privileged scaffold in drug design. RSC Adv 2018; 8:20894-20921. [PMID: 35542353 PMCID: PMC9080947 DOI: 10.1039/c8ra02827c] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023] Open
Abstract
2,3-Dihydroquinazolin-4-one (DHQ) belongs to the class of nitrogen-containing heterocyclic compounds representing a core structural component in various biologically active compounds. In the past decades, several methodologies have been developed for the synthesis of the DHQ framework, especially the 2-substituted derivatives. Unfortunately, multistep syntheses, harsh reaction conditions, and the use of toxic reagents and solvents have limited their full potential as a versatile fragment. Recently, use of green chemistry and alternative strategies are being explored to prepare diverse DHQ derivatives. This fragment is used as a synthon for the preparation of biologically active quinazolinones and as a functional substrate for the synthesis of modified DHQ derivatives exhibiting different biological properties. In this review, we provide a comprehensive assessment of the synthesis and biological evaluations of DHQ derivatives.
Collapse
Affiliation(s)
- Mariateresa Badolato
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Ed. Polifunzionale 87036 Arcavacata di Rende CS Italy
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex 1600 Huron Parkway Ann Arbor MI 48109 USA
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Ed. Polifunzionale 87036 Arcavacata di Rende CS Italy
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex 1600 Huron Parkway Ann Arbor MI 48109 USA
| |
Collapse
|