1
|
Williams DR, Taylor L, Miter GA, Sheiman JL, Wallace JM, Allen MR, Kohler R, Medeiros C. Synthesis Studies and the Evaluation of C 6 Raloxifene Derivatives. ACS Med Chem Lett 2024; 15:879-884. [PMID: 38894928 PMCID: PMC11181480 DOI: 10.1021/acsmedchemlett.4c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Methodology is described for the synthesis of C6 derivatives of raloxifene, a prescribed drug for the treatment and prevention of osteoporosis. Studies have explored the incorporation of electron-withdrawing substituents at C6 of the benzothiophene core. Efficient processes are also examined to introduce hydrogen bond donor and acceptor functionality. Raloxifene derivatives are evaluated with in vitro testing to determine estrogen receptor (ER) binding affinity and gene expression in MC3T3 cells.
Collapse
Affiliation(s)
- David R. Williams
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Levin Taylor
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Gabriel A. Miter
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Johnathan L. Sheiman
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Joseph M. Wallace
- Department
of Biomedical Engineering, Indiana University-Purdue
University, Indianapolis, Indiana 46202, United States
| | - Matthew R. Allen
- Department
of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202 United States
| | - Rachel Kohler
- Department
of Biomedical Engineering, Indiana University-Purdue
University, Indianapolis, Indiana 46202, United States
| | - Claudia Medeiros
- Department
of Biomedical Engineering, Indiana University-Purdue
University, Indianapolis, Indiana 46202, United States
| |
Collapse
|
2
|
Zaraei SO, Dohle W, Anbar HS, El-Gamal R, Leblond B, Foster PA, Al-Tel TH, Potter BVL, El-Gamal MI. Synthesis, biological evaluation, and stability studies of raloxifene mono- and bis-sulfamates as dual-targeting agents. Bioorg Med Chem 2024; 101:117645. [PMID: 38401456 DOI: 10.1016/j.bmc.2024.117645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
All three possible sulfamate derivatives of the selective estrogen receptor modulator Raloxifene (bis-sulfamate 7 and two mono-sulfamates 8-9) were synthesized and evaluated as inhibitors of the clinical drug target steroid sulfatase (STS), both in cell-free and in cell-based assays, and also as estrogen receptor (ER) modulators. Bis-sulfamate 7 was the most potent STS inhibitor with an IC50 of 12.2 nM in a whole JEG3 cell-based assay, with the two mono-sulfamates significantly weaker. The estrogen receptor-modulating activities of 7-9 showed generally lower affinities compared to Raloxifene HCl, diethylstilbestrol and other known ligands, with mono-sulfamate 8 being the best ligand (Ki of 1.5 nM) for ERα binding, although 7 had a Ki of 13 nM and both showed desirable antagonist activity. The antiproliferative activities of the sulfamate derivatives against the T-47D breast cancer cell line showed 7 as most potent (GI50 = 7.12 µM), comparable to that of Raloxifene. Compound 7 also showed good antiproliferative potency in the NCI-60 cell line panel with a GI50 of 1.34 µM against MDA-MB-231 breast cancer cells. Stability testing of 7-9 showed that bis-sulfamate 7 hydrolyzed by desulfamoylation at a surprisingly rapid rate, initially leading selectively to 8 and finally to Raloxifene 3 without formation of 9. The mechanisms of these hydrolysis reactions could be extensively rationalized. Conversion of Raloxifene (3) into its bis-sulfamate (7) thus produced a promising drug lead with nanomolar dual activity as an STS inhibitor and ERα antagonist, as a potential candidate for treatment of estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- Seyed-Omar Zaraei
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wolfgang Dohle
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Hanan S Anbar
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates
| | - Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Bertrand Leblond
- Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Paul A Foster
- Institute of Metabolism and Systems Research, 2(nd) Floor IBR Tower, University of Birmingham, Birmingham B15 2TT, United Kingdom; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, United Kingdom
| | - Taleb H Al-Tel
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Barry V L Potter
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom; Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
3
|
Garg P, Singh A. Unmasking Dipole Character of Acyl Ketene Dithioacetals via a Cascade Reaction with Arynes: Synthesis of Benzo[b]thiophenes. Org Lett 2018; 20:1320-1323. [PMID: 29446635 DOI: 10.1021/acs.orglett.8b00053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An unusual strategy toward novel substituted benzo[b]thiophenes has been developed. The generation of arynes in the presence of acyl ketene dithioacetals resulted in a cascade reaction involving [3 + 2] cycloaddition, and a dealkylative arylation of a thioether moiety to afford 2,3-disubstuted benzo[b]thiophenes. This route represents an expeditious approach to benzothiophenes that employs acyl ketene dithioacetals as dipoles.
Collapse
Affiliation(s)
- Parul Garg
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur, UP-208016, India
| | - Anand Singh
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur, UP-208016, India
| |
Collapse
|