1
|
Li H, Xia Z, Li L, Zeng J, Lv J, Wang H, Gu S, Chen F. Regioselective Cleavage and Reconfiguration of C-S Bonds with Diazo Compounds. Org Lett 2024; 26:8405-8409. [PMID: 39297546 DOI: 10.1021/acs.orglett.4c03246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A coupling reaction between diazo compounds and phenyl benzyl sulfide catalyzed by TfOH has been reported. This reaction can synthesize important α-arylthio carbonyl compounds via regioselective cleavage and reconfiguration of C-S bonds, and various functional groups were tolerant to the reaction conditions. Mechanistic studies have conclusively established that the pivotal intermediate in the reaction was meticulously investigated through spectroscopic evidence, complemented by rigorous control experiments.
Collapse
Affiliation(s)
- Huan Li
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhimin Xia
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lewan Li
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jie Zeng
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jian Lv
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Haifeng Wang
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan 430205, China
| | - Shuangxi Gu
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fener Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan 430205, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
2
|
Nakajima T, Takano K, Maeda H, Ogiwara Y, Sakai N. Production of Alkyl Aryl Sulfides from Aromatic Disulfides and Alkyl Carboxylates via a Disilathiane-Disulfide Interchange Reaction. Chem Asian J 2021; 16:4103-4107. [PMID: 34693645 DOI: 10.1002/asia.202101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/17/2021] [Indexed: 11/11/2022]
Abstract
The results of this study show that disilathiane is an effective mediator in the synthesis of alkyl aryl sulfides with disulfides and alkyl carboxylates. Mechanistic studies suggest that disilathiane promotes cleavage of the sulfur-sulfur bond of disulfides to generate thiosilane as a key intermediate. Diselenides were also applicable to this transformation to produce the corresponding selenides.
Collapse
Affiliation(s)
- Takumi Nakajima
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba, 278-8510, Japan
| | - Ken Takano
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba, 278-8510, Japan
| | - Hiromu Maeda
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba, 278-8510, Japan
| | - Yohei Ogiwara
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba, 278-8510, Japan
| | - Norio Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba, 278-8510, Japan
| |
Collapse
|
3
|
Ling OC, Khaligh NG, Ching JJ. Recent Catalytic Advances in the Synthesis of Organic Symmetric Disulfides. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200221111120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Organic symmetric disulfides have been broadly studied in various fields such
as synthetic intermediates for various organic transformations, agro-chemicals, biochemistry,
pharmacological chemistry, industrial polymers, peptidomimetics, self-assembled
monolayers (SAMs), etc. Owing to versatile applications, the search and development of
efficient, environmentally friendly, mild and inexpensive methods for the preparation of
organic disulfides play an important role in the organic functional group transformations.
Various aspects of the S–S bond formation are available in some books on organic functional
group transformations, as well as two review articles that have been published in the
years 2008 and 2014 highlighting the developments of disulfide bond formation using a
variety of reagents. However, investigations on new catalytic methods are being regularly
reported and new types of disulfides are synthesized. The present review has attempted to systematically summarize
recent catalytic advances in the process of S–S bond formation with a major focus since 2014 on highlighting
mechanistic considerations, scope, advantages, and limitations. This review does not include patent
literature.
Collapse
Affiliation(s)
- Ong Chiu Ling
- Nanotechnology and Catalysis Research Center, Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nader Ghaffari Khaligh
- Nanotechnology and Catalysis Research Center, Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Juan Joon Ching
- Nanotechnology and Catalysis Research Center, Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Wang L, Qiao J, Wei J, Liang Z, Xu X, Li N. Air-stable binuclear Titanium(IV) salophen perfluorobutanesulfonate with zinc power catalytic system and its application to C–S and C–Se bond formation. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
5
|
Yan X, Li C, Xu X, He Q, Zhao X, Pan Y. Sulfonium ylide formation and subsequent C S bond cleavage of aromatic isopropyl sulfide catalyzed by hemin in aqueous solvent. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Li N, Yao J, Wang L, Wei J, Liu W, Liu W, Xu X, Liang Z. Titanocene perfluorobutanesulfonate catalyzed reduction of disulfides in the presence of zinc to synthesize unsymmetrical sulfides. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Abbasi M, Nowrouzi N, Borazjani SG. Conversion of organic halides to disulfanes using KCN and CS 2. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Abbasi M, Sabet A. Europhtal (8020) efficiently catalyzes the aerobic oxidation of in situ generated thiols to symmetric disulfides (disulfanes). J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|