1
|
Lindberg MF, Deau E, Miege F, Greverie M, Roche D, George N, George P, Merlet L, Gavard J, Brugman SJT, Aret E, Tinnemans P, de Gelder R, Sadownik J, Verhofstad E, Sleegers D, Santangelo S, Dairou J, Fernandez-Blanco Á, Dierssen M, Krämer A, Knapp S, Meijer L. Chemical, Biochemical, Cellular, and Physiological Characterization of Leucettinib-21, a Down Syndrome and Alzheimer's Disease Drug Candidate. J Med Chem 2023; 66:15648-15670. [PMID: 38051674 DOI: 10.1021/acs.jmedchem.3c01888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Leucettinibs are substituted 2-aminoimidazolin-4-ones (inspired by the marine sponge natural product Leucettamine B) developed as pharmacological inhibitors of DYRK1A (dual-specificity, tyrosine phosphorylation-regulated kinase 1A), a therapeutic target for indications such as Down syndrome and Alzheimer's disease. Leucettinib-21 was selected as a drug candidate following extensive structure/activity studies and multiparametric evaluations. We here report its physicochemical properties (X-ray powder diffraction, differential scanning calorimetry, stability, solubility, crystal structure) and drug-like profile. Leucettinib-21's selectivity (analyzed by radiometric, fluorescence, interaction, thermal shift, residence time assays) reveals DYRK1A as the first target but also some "off-targets" which may contribute to the drug's biological effects. Leucettinib-21 was cocrystallized with CLK1 and modeled in the DYRK1A structure. Leucettinib-21 inhibits DYRK1A in cells (demonstrated by direct catalytic activity and phosphorylation levels of Thr286-cyclin D1 or Thr212-Tau). Leucettinib-21 corrects memory disorders in the Down syndrome mouse model Ts65Dn and is now entering safety/tolerance phase 1 clinical trials.
Collapse
Affiliation(s)
- Mattias F Lindberg
- Perharidy Research Center, Perha Pharmaceuticals, 29680 Roscoff, Bretagne, France
| | - Emmanuel Deau
- Perharidy Research Center, Perha Pharmaceuticals, 29680 Roscoff, Bretagne, France
| | - Frédéric Miege
- Edelris, Bâtiment Bioserra 1, 60 Avenue Rockefeller, 69008 Lyon, France
| | - Marie Greverie
- Perharidy Research Center, Perha Pharmaceuticals, 29680 Roscoff, Bretagne, France
| | - Didier Roche
- Edelris, Bâtiment Bioserra 1, 60 Avenue Rockefeller, 69008 Lyon, France
| | - Nicolas George
- Oncodesign, 25-27 Avenue du Québec, 91140 Villebon-sur-Yvette, France
| | - Pascal George
- Perharidy Research Center, Perha Pharmaceuticals, 29680 Roscoff, Bretagne, France
| | - Laura Merlet
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université d'Angers, 8 Quai Moncousu, 44007 Nantes Cedex 1, France
- Equipe Labellisée Ligue Contre le Cancer, 75013 Paris, France
| | - Julie Gavard
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université d'Angers, 8 Quai Moncousu, 44007 Nantes Cedex 1, France
- Equipe Labellisée Ligue Contre le Cancer, 75013 Paris, France
- Institut de Cancérologie de l'Ouest (ICO), Boulevard Professeur Jacques Monod, 44800 Saint-Herblain, France
| | | | - Edwin Aret
- Symeres, Peelterbaan 2, 6002 NK Weert, The Netherlands
| | - Paul Tinnemans
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - René de Gelder
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jan Sadownik
- Symeres, Peelterbaan 2, 6002 NK Weert, The Netherlands
| | | | | | | | - Julien Dairou
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, 45 rue des Saints Pères, 75006 Paris, France
| | - Álvaro Fernandez-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08036, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08036, Spain
| | - Andreas Krämer
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von Laue Strasse 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von Laue Strasse 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Laurent Meijer
- Perharidy Research Center, Perha Pharmaceuticals, 29680 Roscoff, Bretagne, France
| |
Collapse
|
2
|
Deau E, Lindberg MF, Miege F, Roche D, George N, George P, Krämer A, Knapp S, Meijer L. Leucettinibs, a Class of DYRK/CLK Kinase Inhibitors Inspired by the Marine Sponge Natural Product Leucettamine B. J Med Chem 2023; 66:10694-10714. [PMID: 37487467 DOI: 10.1021/acs.jmedchem.3c00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Dual-specificity, tyrosine phosphorylation-regulated kinases (DYRKs) and cdc2-like kinases (CLKs) recently attracted attention due to their central involvement in various pathologies. We here describe a family of DYRK/CLK inhibitors derived from Leucettines and the marine natural product Leucettamine B. Forty-five N2-functionalized 2-aminoimidazolin-4-ones bearing a fused [6 + 5]-heteroarylmethylene were synthesized. Benzothiazol-6-ylmethylene was selected as the most potent residue among 15 different heteroarylmethylenes. 186 N2-substituted 2-aminoimidazolin-4-ones bearing a benzothiazol-6-ylmethylene, collectively named Leucettinibs, were synthesized and extensively characterized. Subnanomolar IC50 (0.5-20 nM on DYRK1A) inhibitors were identified and one Leucettinib was modeled in DYRK1A and co-crystallized with CLK1 and the weaker inhibited off-target CSNK2A1. Kinase-inactive isomers of Leucettinibs (>3-10 μM on DYRK1A), named iso-Leucettinibs, were synthesized and characterized as suitable negative control compounds for functional experiments. Leucettinibs, but not iso-Leucettinibs, inhibit the phosphorylation of DYRK1A substrates in cells. Leucettinibs provide new research tools and potential leads for further optimization toward therapeutic drug candidates.
Collapse
Affiliation(s)
- Emmanuel Deau
- Perha Pharmaceuticals, Perharidy, 29680 Roscoff, France
| | | | - Frédéric Miege
- Edelris, Bâtiment Bioserra 1, 60 Avenue Rockefeller, 69008 Lyon, France
| | - Didier Roche
- Edelris, Bâtiment Bioserra 1, 60 Avenue Rockefeller, 69008 Lyon, France
| | - Nicolas George
- Oncodesign, 25-27 Avenue du Québec, 91140 Villebon-sur-Yvette, France
| | - Pascal George
- Perha Pharmaceuticals, Perharidy, 29680 Roscoff, France
| | - Andreas Krämer
- Goethe-University Frankfurt, Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von Laue Str. 15, 60438 Frankfurt am Main, Germany
- Goethe-University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Goethe-University Frankfurt, Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von Laue Str. 15, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
4
|
Abstract
The β-lactams constitute a well-known class of compounds having tremendous biological significance. Besides being a motif of biological interest, they serve as versatile synthons in organic chemistry. In fact, their easy accessibility in the laboratory by several methods combined with inherent reactivity of the β -lactam ring due to ring-strain places it among the most sought for substrate in the arsenal of synthetic organic chemists. Several chemical reagents, heat, and light promote its ring-opening, ring-expansions and rearrangement reactions yielding a wide variety of biologically relevant nitrogen-containing acyclic and heterocyclic compounds. In recent years, the reactivity of differently functionalized β-lactam rings towards diverse kinds of reagents has been investigated. These investigations exploit selective bond cleavage of the β-lactam nucleus via N1-C2, C3- C4, C2-C3 or N1-C4 bond cleavage using simple reagents. The reduction of amide carbonyl group, thionation, and pyrolysis/photolysis have also been explored. These investigations have led to the discovery of many easy synthetic methods for biologically important classes of compounds such as β-amino acids, β-amino esters, amino sugars, amino alcohols, peptides, azetidines, and other heterocyclic compounds. This article discusses the advances made in the studies on the reactivity of β- lactam ring during the last ten years.
Collapse
Affiliation(s)
- Japheth O. Ombito
- Chemistry Department, University of Botswana, P. Bag: 0022, Gaborone, Botswana
| | - Girija S. Singh
- Chemistry Department, University of Botswana, P. Bag: 0022, Gaborone, Botswana
| |
Collapse
|
5
|
Kotagiri R, Deng Z, Xu W, Cai Q. Stereospecific Synthesis of ( E)-5-Tetrasubstituted-ylidene-3,5-dihydro-4 H-imidazol-4-ones. Org Lett 2019; 21:3946-3949. [PMID: 31140817 DOI: 10.1021/acs.orglett.9b01063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A stereospecific synthesis of ( E)-5-tetrasubstituted-ylidene-3,5-dihydro-4 H-imidazol-4-one derivatives is demonstrated through a cascade process by combination of a Michael addition and Boulton-Katritzky rearrangement. The method provides a simple and efficient approach for the synthesis of ( E)-5-tetrasubstituted-ylidene-3,5-dihydro-4 H-imidazol-4-ones from the reactions of N-(isoxazol-3-yl)-propiolamides or N-(1,2,4-oxadiazo-3-yl) propiolamides with N or C nucleophiles.
Collapse
Affiliation(s)
- Rajendraprasad Kotagiri
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy , Jinan University , No 601 Huangpu Avenue West , Guangzhou 510632 , China
| | - Zhuoji Deng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy , Jinan University , No 601 Huangpu Avenue West , Guangzhou 510632 , China
| | - Wei Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy , Jinan University , No 601 Huangpu Avenue West , Guangzhou 510632 , China
| | - Qian Cai
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy , Jinan University , No 601 Huangpu Avenue West , Guangzhou 510632 , China
| |
Collapse
|
6
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|