1
|
Corcé V, Ollivier C, Fensterbank L. Boron, silicon, nitrogen and sulfur-based contemporary precursors for the generation of alkyl radicals by single electron transfer and their synthetic utilization. Chem Soc Rev 2022; 51:1470-1510. [PMID: 35113115 DOI: 10.1039/d1cs01084k] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent developments in the use of boron, silicon, nitrogen and sulfur derivatives in single-electron transfer reactions for the generation of alkyl radicals are described. Photoredox catalyzed, electrochemistry promoted or thermally-induced oxidative and reductive processes are discussed highlighting their synthetic scope and discussing their mechanistic pathways.
Collapse
Affiliation(s)
- Vincent Corcé
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| | - Cyril Ollivier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| |
Collapse
|
2
|
Kubota K, Toyoshima N, Miura D, Jiang J, Maeda S, Jin M, Ito H. Introduction of a Luminophore into Generic Polymers via Mechanoradical Coupling with a Prefluorescent Reagent. Angew Chem Int Ed Engl 2021; 60:16003-16008. [PMID: 33991023 DOI: 10.1002/anie.202105381] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/10/2021] [Indexed: 11/11/2022]
Abstract
Herein, we report a novel strategy for introducing a luminophore into generic polymers facilitated by mechanical stimulation. In this study, polymeric mechanoradicals were formed in situ under ball-milling conditions to undergo radical-radical coupling with a prefluorescent nitroxide-based reagent in order to incorporate a luminophore into the polymer main chains via a covalent bond. This method allowed the direct and conceptually simple preparation of luminescent polymeric materials from a wide range of generic polymers such as polystyrene, polymethyl methacrylate, and polyethylene. These results indicate that the present mechanoradical coupling strategy may help to transform existing commodity polymers into more valuable functional materials.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Naoki Toyoshima
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Daiyo Miura
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Julong Jiang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Mingoo Jin
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
3
|
Kubota K, Toyoshima N, Miura D, Jiang J, Maeda S, Jin M, Ito H. Introduction of a Luminophore into Generic Polymers via Mechanoradical Coupling with a Prefluorescent Reagent. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Naoki Toyoshima
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Daiyo Miura
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Julong Jiang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Department of Chemistry Faculty of Science Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Department of Chemistry Faculty of Science Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Mingoo Jin
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Hajime Ito
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
4
|
Gockel SN, Lee S, Gay BL, Hull KL. Oxidative Three-Component Carboamination of Vinylarenes with Alkylboronic Acids. ACS Catal 2021; 11:5166-5171. [PMID: 36619299 PMCID: PMC9815720 DOI: 10.1021/acscatal.1c00105] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Three-component carboamination of alkenes is of significant interest due to the ease by which functionalized amines can be produced from readily available chemical building blocks. Previously, a variety of carbon-centered radical precursors have been studied as the carbon components for this reaction, however, the use of general alkyl sources has remained as an unsolved challenge. Herein we present our efforts to develop an oxidative carboamination protocol that utilizes alkylboronic acids as carbon-centered radical precursors. The presented work demonstrates 34 examples, ranging from 17 to 88% yields, with a broad scope in vinylarenes, amines, and alkylboronic acids. Preliminary mechanistic studies suggest that a single-electron oxidation of the alkylboronic acid generates a carbon-centered radical intermediate that adds across the olefin followed by C-N bond formation via Cu-mediated inner-sphere or carbocation-mediated pathways.
Collapse
Affiliation(s)
| | | | - Brittany L. Gay
- Department of Chemistry, The University of Texas at Austin, 105 E St, Austin, Texas, 78712
| | - Kami L. Hull
- Department of Chemistry, The University of Texas at Austin, 105 E St, Austin, Texas, 78712
| |
Collapse
|
5
|
Ding S, Ren H, Zhu M, Ma Q, Miao Z, Li P. Silver(I)-mediated oxidation/cyclization of acrylamides with alkyl trifluoroborates. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1846057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Siyi Ding
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Science, Xijing University, Xi’an, China
| | - Huaping Ren
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Science, Xijing University, Xi’an, China
| | - Min Zhu
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Science, Xijing University, Xi’an, China
| | - Qiang Ma
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Science, Xijing University, Xi’an, China
| | - Zongcheng Miao
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Science, Xijing University, Xi’an, China
| | - Pengfei Li
- Bioactive Small Molecules Research Group, Center for Organic Chemistry, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
André‐Joyaux E, Kuzovlev A, Tappin NDC, Renaud P. A General Approach to Deboronative Radical Chain Reactions with Pinacol Alkylboronic Esters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Emy André‐Joyaux
- University of Bern Department of Chemistry and Biochemistry Freiestrasse 3 3012 Bern Switzerland
| | - Andrey Kuzovlev
- University of Bern Department of Chemistry and Biochemistry Freiestrasse 3 3012 Bern Switzerland
| | - Nicholas D. C. Tappin
- University of Bern Department of Chemistry and Biochemistry Freiestrasse 3 3012 Bern Switzerland
| | - Philippe Renaud
- University of Bern Department of Chemistry and Biochemistry Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
8
|
André‐Joyaux E, Kuzovlev A, Tappin NDC, Renaud P. A General Approach to Deboronative Radical Chain Reactions with Pinacol Alkylboronic Esters. Angew Chem Int Ed Engl 2020; 59:13859-13864. [DOI: 10.1002/anie.202004012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/23/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Emy André‐Joyaux
- University of Bern Department of Chemistry and Biochemistry Freiestrasse 3 3012 Bern Switzerland
| | - Andrey Kuzovlev
- University of Bern Department of Chemistry and Biochemistry Freiestrasse 3 3012 Bern Switzerland
| | - Nicholas D. C. Tappin
- University of Bern Department of Chemistry and Biochemistry Freiestrasse 3 3012 Bern Switzerland
| | - Philippe Renaud
- University of Bern Department of Chemistry and Biochemistry Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
9
|
Böser R, Denker L, Frank R. Benzyl Borane NHC Adducts: Beyond B−C Bond Scission. Chemistry 2019; 25:10575-10579. [DOI: 10.1002/chem.201902698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Richard Böser
- Institute of Inorganic and Analytical ChemistryTechnische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Lars Denker
- Institute of Inorganic and Analytical ChemistryTechnische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - René Frank
- Institute of Inorganic and Analytical ChemistryTechnische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|