1
|
Liang M, Yan S, Xu Y, Ma C, Zhang X, Fan X. Synthesis of CF 3-Isoquinolinones and Imidazole-Fused CF 3-Isoquinolinones Based on C-H Activation-Initiated Cascade Reactions of 2-Aryloxazolines. J Org Chem 2024; 89:10180-10196. [PMID: 38963050 DOI: 10.1021/acs.joc.4c01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Presented herein are novel syntheses of CF3-isoquinolinones and imidazole fused CF3-isoquinolinones based on the cascade reactions of 2-aryloxazolines with trifluoromethyl imidoyl sulfoxonium ylides. The formation of CF3-isoquinolinone involves an intriguing cascade process including oxazolinyl group-assisted aryl alkylation through C(sp2)-H bond metalation, carbene formation, migratory insertion, and proto-demetalation followed by intramolecular condensation and water-promoted oxazolinyl ring-scission. With this method, the isoquinolinone scaffold tethered with valuable functional groups was effectively constructed. By taking advantage of the functional groups embedded therein, the products thus obtained could be readily transformed into imidazole-fused CF3-isoquinolinones or coupled with some clinical drugs to furnish hybrid compounds with potential applications in drug development. In general, the developed protocols feature expeditious and convenient formation of valuable CF3-heterocyclic skeletons, broad substrate scope, and ready scalability. In addition, studies on the activity of selected products against some human cancer cell lines demonstrated their potential as lead compounds for the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Miaomiao Liang
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shengnan Yan
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuanshuang Xu
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Chunhua Ma
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xinying Zhang
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xuesen Fan
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Vorobyeva DV, Petropavlovskikh DA, Godovikov IA, Dolgushin FM, Osipov SN. Synthesis of Functionalized Isoquinolone Derivatives via Rh(III)-Catalyzed [4+2]-Annulation of Benzamides with Internal Acetylene-Containing α-CF 3-α-Amino Carboxylates. Molecules 2022; 27:8488. [PMID: 36500580 PMCID: PMC9736582 DOI: 10.3390/molecules27238488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
A convenient pathway to a new series of α-CF3-substituted α-amino acid derivatives bearing pharmacophore isoquinolone core in their backbone has been developed. The method is based on [4+2]-annulation of N-(pivaloyloxy) aryl amides with orthogonally protected internal acetylene-containing α-amino carboxylates under Rh(III)-catalysis. The target annulation products can be easily transformed into valuable isoquinoline derivatives via a successive aromatization/cross-coupling operation.
Collapse
Affiliation(s)
- Daria V. Vorobyeva
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28/1 Vavilova Str., 119334 Moscow, Russia
| | - Dmitry A. Petropavlovskikh
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28/1 Vavilova Str., 119334 Moscow, Russia
| | - Ivan A. Godovikov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28/1 Vavilova Str., 119334 Moscow, Russia
| | - Fedor M. Dolgushin
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, 119071 Moscow, Russia
- Plekhanov Russian University of Economics, 36, Stremyanny Per., 117997 Moscow, Russia
| | - Sergey N. Osipov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28/1 Vavilova Str., 119334 Moscow, Russia
| |
Collapse
|
3
|
Trending strategies for the synthesis of quinolinones and isoquinolinones. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Mishra S, Nair SR, Baire B. Recent approaches for the synthesis of pyridines and (iso)quinolines using propargylic Alcohols. Org Biomol Chem 2022; 20:6037-6056. [PMID: 35678139 DOI: 10.1039/d2ob00587e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Propargylic alcohols are one of the readily available and highly explored building blocks in organic synthesis. They show distinct reactivities compared to simple alcohols and/or alkynes, and hence provide diverse possibilities to develop novel synthetic strategies for the construction of polycyclic systems, including heterocycles. The six-membered heterocycles, pyridines, quinolines, and isoquinolines, are very important privileged structures in medicinal chemistry and drug discovery due to their broad spectrum of biological activities. They are also part of vitamins, nucleic acids, pharmaceuticals, antibiotics, dyes, and agrochemicals. Many synthetic strategies have been developed for the rapid and efficient generation of these cyclic systems. One such strategy is employing the propargylic alcohols as reactants in the form of either a 3-carbon component or 2-carbon unit. Thus, in this review article, we aimed to summarize various approaches to pyridines, quinolines, and isoquinolines from propargylic alcohols. To the best of our knowledge, so far, no focused reviews have appeared on this topic in the literature. Due to the many reports available, we also restricted ourselves to the developments during the past 17 years, i.e., 2005-2021. We strongly believe that this review article provides comprehensive coverage of research articles on the title topic, and will be of great value for the organic synthetic community for further developments in this area of research.
Collapse
Affiliation(s)
- Surabhi Mishra
- Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| | - Sindoori R Nair
- Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| | - Beeraiah Baire
- Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
5
|
Saiegh T, Meyer C, Cossy J. Rhodium(III)‐Catalyzed Heteroannulations of 3‐Sulfolene Derivatives via C(sp2)–H Activation. Access to Pyridine ortho‑Quinodimethane Precursors. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tomas Saiegh
- ESPCI Paris Molecular, Macromolecular Chemistry, and Materials FRANCE
| | - Christophe Meyer
- ESPCI Paris, CNRS, PSL Research University Laboratory of Organic Chemsitry 10 rue Vauquelin 75005 PARIS FRANCE
| | - Janine Cossy
- ESPCI: ESPCI Paris Molecular, Macromolecular Chemistry, and Materials PARIS FRANCE
| |
Collapse
|
6
|
Gribanov PS, Vorobyeva DV, Tokarev SD, Petropavlovskikh DA, Loginov DA, Nefedov SE, Dolgushin FM, Osipov SN. Rhodium‐Catalyzed C‐H Activation/Annulation of Aryl Hydroxamates with Benzothiadiazol‐Containing Acetylenes. Access to Isoquinoline‐Bridged Donor‐Acceptor Luminophores. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pavel S. Gribanov
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Organic Chemistry RUSSIAN FEDERATION
| | - Daria V. Vorobyeva
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Organic Chemistry RUSSIAN FEDERATION
| | - Sergey D. Tokarev
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Organic Chemistry RUSSIAN FEDERATION
| | - Dmitry A. Petropavlovskikh
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Organic Chemistry RUSSIAN FEDERATION
| | - Dmitry A. Loginov
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Organometallic Chemistry RUSSIAN FEDERATION
| | - Sergey E. Nefedov
- Kurnakov Institute of General and Inorganic Chemistry RAS: Institut obsej i neorganiceskoj himii imeni N S Kurnakova RAN X-ray RUSSIAN FEDERATION
| | - Fedor M. Dolgushin
- Kurnakov Institute of General and Inorganic Chemistry RAS: Institut obsej i neorganiceskoj himii imeni N S Kurnakova RAN X-ray RUSSIAN FEDERATION
| | - Sergey N. Osipov
- A.N. Nesmeyanov Institute of organoelement compounds, Russian Academy of Sciences Ecological Chemistry Vavilov28 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
7
|
Petropavlovskikh DA, Vorobyeva DV, Godovikov IA, Nefedov SE, Filippov OA, Osipov SN. Lossen rearrangement by Rh(III)-catalyzed C-H activation/annulation of aryl hydroxamates with alkynes: access to quinolone-containing amino acid derivatives. Org Biomol Chem 2021; 19:9421-9426. [PMID: 34668894 DOI: 10.1039/d1ob01711j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A convenient and robust method for the preparation of new CF3-containing 2-quinolones has been developed via a Rh(III)-catalyzed C-H activation/Lossen rearrangement/annulation cascade of N-pivaloyloxy-arylamides with internal alkynes bearing an α-CF3-α-amino acid moiety on the triple bond. This work expands the scope of valuable products that are available through C-H activation/annulation reactions of arylamides in organic synthesis.
Collapse
Affiliation(s)
- Dmitry A Petropavlovskikh
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov str. 28, 119991 Moscow, Russia.
| | - Daria V Vorobyeva
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov str. 28, 119991 Moscow, Russia.
| | - Ivan A Godovikov
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov str. 28, 119991 Moscow, Russia.
| | - Sergey E Nefedov
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, 119991, Moscow, Russia
| | - Oleg A Filippov
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov str. 28, 119991 Moscow, Russia.
| | - Sergey N Osipov
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov str. 28, 119991 Moscow, Russia.
| |
Collapse
|
8
|
Vorobyeva DV, Petropavlovskikh DA, Godovikov IA, Nefedov SE, Osipov SN. Rh(III)‐Catalyzed C−H Activation/Annulation of Aryl Hydroxamates with CF
3
‐Containing
α
‐Propargyl
α
‐Amino Acid Derivatives. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daria V. Vorobyeva
- Institute of Organoelement compounds Russian Academy of Sciences Vavilov str. 28 119991 Moscow Russian Federation
| | - Dmitry A. Petropavlovskikh
- Institute of Organoelement compounds Russian Academy of Sciences Vavilov str. 28 119991 Moscow Russian Federation
| | - Ivan A. Godovikov
- Institute of Organoelement compounds Russian Academy of Sciences Vavilov str. 28 119991 Moscow Russian Federation
| | - Sergey E. Nefedov
- Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninsky pr. 31 119991 Moscow Russian Federation
| | - Sergey N. Osipov
- Institute of Organoelement compounds Russian Academy of Sciences Vavilov str. 28 119991 Moscow Russian Federation
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya Str. 6 117198 Moscow Russian Federation
| |
Collapse
|