1
|
Arshad U, Shafiq N, Parveen S, Rashid M. Discovery of novel dihydro-pyrimidine hybrids: insight into the design, synthesis, biological evaluation and absorption, distribution, metabolism and excretion studies. Future Med Chem 2024; 16:1949-1969. [PMID: 39263831 PMCID: PMC11485738 DOI: 10.1080/17568919.2024.2389767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
Aim: By keeping in aspects, the pharmacological potential of heterocyclic compounds, pyrimidine-based compounds were designed, synthesized and evaluated for α-amylase inhibitory potential.Materials & methods: Five new series 1a-l, 2a-d, 3a-d, 4a-d and 5a-d of 1,2,3,4-tetrahydroprimidine-5-carboxylate derivatives were designed by de novo method by taking Alogliptin as reference compound. Here in we describe synthesis and characterization of compounds as potential α-amylase inhibitor.Results: Structure activity relationship (SAR), in vitro analysis and molecular modelling approaches generate compounds 1 h, 1i, 1k and 4c as potential lead with good α-amylase inhibitory selection. However, compound 1k failed the criteria of optimization as drug lead by ADME studies while all other compounds showed optimum range for all in silico ADME parameters.Conclusion: Therefore, these compounds can serve as potential lead candidate in developing anti-diabetic therapy.
Collapse
Affiliation(s)
- Uzma Arshad
- Synthetic & Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Nusrat Shafiq
- Synthetic & Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Shagufta Parveen
- Synthetic & Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Maryam Rashid
- Synthetic & Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| |
Collapse
|
2
|
Maikhuri VK, Mathur D, Chaudhary A, Kumar R, Parmar VS, Singh BK. Transition-Metal Catalyzed Synthesis of Pyrimidines: Recent Advances, Mechanism, Scope and Future Perspectives. Top Curr Chem (Cham) 2024; 382:4. [PMID: 38296918 DOI: 10.1007/s41061-024-00451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/07/2024] [Indexed: 02/02/2024]
Abstract
Pyrimidine is a pharmacologically important moiety that exhibits diverse biological activities. This review reflects the growing significance of transition metal-catalyzed reactions for the synthesis of pyrimidines (with no discussion being made on the transition metal-catalyzed functionalization of pyrimidines). The effect of different catalysts on the selectivity/yields of pyrimidines and catalyst recyclability (wherever applicable) are described, together with attempts to illustrate the role of the catalyst through mechanisms. Although several methods have been researched for synthesizing this privileged scaffold, there has been a considerable push to expand transition metal-catalyzed, sustainable, efficient and selective synthetic strategies leading to pyrimidines. The aim of the authors with this update (2017-2023) is to drive the designing of new transition metal-mediated protocols for pyrimidine synthesis.
Collapse
Affiliation(s)
- Vipin K Maikhuri
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Divya Mathur
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
- Department of Chemistry, Daulat Ram College, University of Delhi, Delhi, 110007, India.
| | - Ankita Chaudhary
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi, 110021, India
| | - Rajesh Kumar
- Department of Chemistry, R.D.S College, B.R.A. Bihar University, Muzaffarpur, India
| | - Virinder S Parmar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Nanoscience Program, CUNY Graduate Center and Department of Chemistry, City College & Medgar Evers College, The City University of New York, 160 Convent Avenue, New York, NY, 10031, USA
- Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
3
|
Gündüz MG, Dengiz C, Koçak Aslan E, Skaro Bogojevic S, Nikodinovic-Runic J. Attaching azoles to Hantzsch 1,4-dihydropyridines: Synthesis, theoretical investigation of nonlinear optical properties, antimicrobial evaluation and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|