1
|
Kirihara M, Osugi R, Saito K, Adachi K, Yamazaki K, Matsushima R, Kimura Y. Sodium Hypochlorite Pentahydrate as a Reagent for the Cleavage of trans-Cyclic Glycols. J Org Chem 2019; 84:8330-8336. [PMID: 31117583 DOI: 10.1021/acs.joc.9b01132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sodium hypochlorite pentahydrate (NaOCl·5H2O) can be used toward the efficient glycol cleavage of trans-cyclic glycols, which are generally resistant to this transformation. Interestingly, the reaction of cis-cyclic glycols with NaOCl·5H2O is slower than that observed for the corresponding trans-isomer. This trans selectivity is in sharp contrast to traditional oxidants used for glycol cleavage. Acyclic glycols can also react efficiently with NaOCl·5H2O to form their corresponding carbonyl compounds in high yield.
Collapse
Affiliation(s)
- Masayuki Kirihara
- Department of Materials and Life Science , Shizuoka Institute of Science and Technology , 2200-2 Toyosawa , Fukuroi , Shizuoka 437-8555 , Japan
| | - Rie Osugi
- Department of Materials and Life Science , Shizuoka Institute of Science and Technology , 2200-2 Toyosawa , Fukuroi , Shizuoka 437-8555 , Japan
| | - Katsuya Saito
- Department of Materials and Life Science , Shizuoka Institute of Science and Technology , 2200-2 Toyosawa , Fukuroi , Shizuoka 437-8555 , Japan
| | - Kouta Adachi
- Department of Materials and Life Science , Shizuoka Institute of Science and Technology , 2200-2 Toyosawa , Fukuroi , Shizuoka 437-8555 , Japan
| | - Kento Yamazaki
- Department of Materials and Life Science , Shizuoka Institute of Science and Technology , 2200-2 Toyosawa , Fukuroi , Shizuoka 437-8555 , Japan
| | - Ryoji Matsushima
- Department of Materials and Life Science , Shizuoka Institute of Science and Technology , 2200-2 Toyosawa , Fukuroi , Shizuoka 437-8555 , Japan
| | - Yoshikazu Kimura
- Research and Development Department , Iharanikkei Chemical Industry Co., Ltd. , Kambara , Shimizu-ku , Shizuoka 421-3203 , Japan
| |
Collapse
|
2
|
Zakharenko AL, Mozhaitsev ES, Suslov EV, Korchagina DV, Volcho KP, Salakhutdinov NF, Lavrik OI. Synthesis and Inhibitory Properties of Imines Containing Monoterpenoid and Adamantane Fragments Against DNA Repair Enzyme Tyrosyl-DNA Phosphodiesterase 1 (Tdp1). Chem Nat Compd 2018. [DOI: 10.1007/s10600-018-2443-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
3
|
Ponomarev KY, Suslov EV, Zakharenko AL, Zakharova OD, Rogachev AD, Korchagina DV, Zafar A, Reynisson J, Nefedov AA, Volcho KP, Salakhutdinov NF, Lavrik OI. Aminoadamantanes containing monoterpene-derived fragments as potent tyrosyl-DNA phosphodiesterase 1 inhibitors. Bioorg Chem 2017; 76:392-399. [PMID: 29248742 DOI: 10.1016/j.bioorg.2017.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 12/17/2022]
Abstract
The ability of a number of nitrogen-containing compounds that simultaneously carry the adamantane and monoterpene moieties to inhibit Tdp1, an important enzyme of the DNA repair system, is studied. Inhibition of this enzyme has the potential to overcome chemotherapeutic resistance of some tumor types. Compound (+)-3c synthesized from 1-aminoadamantane and (+)-myrtenal, and compound 4a produced from 2-aminoadamantane and citronellal were found to be most potent as they inhibited Tdp1 with IC50 values of 6 and 3.5 µM, respectively. These compounds proved to have low cytotoxicity in colon HCT-116 and lung A-549 human tumor cell lines (CC50 > 50 µM). It was demonstrated that compound 4a at 10 µM enhanced cytotoxicity of topotecan, a topoisomerase 1 poison in clinical use, against HCT-116 more than fivefold and to a lesser extent of 1.5 increase in potency for A-549.
Collapse
Affiliation(s)
- Konstantin Yu Ponomarev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russian Federation
| | - Evgeniy V Suslov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russian Federation
| | - Alexandra L Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russian Federation
| | - Olga D Zakharova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russian Federation
| | - Artem D Rogachev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russian Federation; Novosibirsk State University, 2, Pirogova Str., Novosibirsk 630090, Russian Federation
| | - Dina V Korchagina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russian Federation
| | - Ayesha Zafar
- School of Chemical Sciences, University of Auckland, New Zealand
| | | | - Andrey A Nefedov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russian Federation; Novosibirsk State University, 2, Pirogova Str., Novosibirsk 630090, Russian Federation
| | - Konstantin P Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russian Federation; Novosibirsk State University, 2, Pirogova Str., Novosibirsk 630090, Russian Federation
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russian Federation; Novosibirsk State University, 2, Pirogova Str., Novosibirsk 630090, Russian Federation
| | - Olga I Lavrik
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russian Federation; Novosibirsk State University, 2, Pirogova Str., Novosibirsk 630090, Russian Federation.
| |
Collapse
|
4
|
Anti-influenza activity of diazaadamantanes combined with monoterpene moieties. Bioorg Med Chem Lett 2017; 27:4531-4535. [PMID: 28886889 DOI: 10.1016/j.bmcl.2017.08.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022]
Abstract
The antiviral activity of several diaza-adamantanes containing monoterpenoid moieties against a rimantadine-resistant strain of the influenza A/Puerto Rico/8/34 (H1N1) virus was studied. Hetero-adamantanes containing monoterpene moieties at the aminal position of the heterocycle were found to exhibit lower activity compared to compounds with a diaza-adamantane fragment and a monoterpene moiety linked via an amino group at the 6-position of the hetero-adamantane ring. The highest selectivity index (a ratio of the 50% cytotoxic concentration to the 50% inhibitory concentration) out of 30 was observed for compound 8d, which contains a citronellal monoterpenoid moiety. Diaza-adamantane 8d was superior to its adamantane-containing analog 5 both in its anti-influenza activity and selectivity. Furthermore, 8d has more balanced physicochemical properties than 5, making the former a more promising drug candidate. Modelling these compounds against an influenza virus M2 ion channel predicted plausible binding modes to both the wild-type and the mutant (S31N).
Collapse
|
5
|
Zakharenko AL, Ponomarev KU, Suslov EV, Korchagina DV, Volcho KP, Vasil'eva IA, Salakhutdinov NF, Lavrik OI. [Inhibitory Properties of Nitrogen-Containing Adamantane Derivatives with Monoterpenoid Fragments Against Tyrosyl-DNA Phosphodiesterase I]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016; 41:731-6. [PMID: 27125028 DOI: 10.1134/s1068162015060199] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It was found that compounds combining diazaadamantane and monoterpenoid fragments are potent inhibitors of new structural type of human recombinant DNA repair enzyme Tyrosyl-DNA phosphodiesterase I (Tdp1). It was demonstrated that the inhibition efficiency depended on the length and flexibility of the aliphatic chain of the substituent.
Collapse
|
6
|
Ponomarev K, Pavlova A, Suslov E, Ardashov O, Korchagina D, Nefedov A, Tolstikova T, Volcho K, Salakhutdinov N. Synthesis and analgesic activity of new compounds combining azaadamantane and monoterpene moieties. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1464-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|