1
|
Alissa M, Alzahrani KJ, Alsuwat MA. Neurological Implications of Poxvirus Infections: Pathogenesis, Neurotropism, and Clinical Manifestations. Rev Med Virol 2024; 34:e2581. [PMID: 39243203 DOI: 10.1002/rmv.2581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
Poxviridae is a diverse family of double-stranded DNA viruses, historically significant for diseases like smallpox caused by variola virus (VARV). These viruses exhibit unique cytoplasmic replication strategies, large genomes encoding numerous proteins, and the ability to cause severe cutaneous and systemic diseases. Recent attention has focused on their neurotropic potential, including mechanisms of CNS invasion, immune-mediated damage, and clinical manifestations such as encephalitis and myelitis. This review synthesises current knowledge on poxvirus neurotropism, highlighting pathophysiological mechanisms and clinical implications.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Meshari A Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
2
|
Mohamed RI, Elsamadony HA, Alghamdi RA, Eldin ALAZ, El-Shemy A, Abdel-Moez Amer S, Bahshwan SMA, El-Saadony MT, El-Sayed HS, El-Tarabily KA, Saad ASA. Molecular and pathological screening of the current circulation of fowlpox and pigeon pox virus in backyard birds. Poult Sci 2024; 103:104249. [PMID: 39418793 PMCID: PMC11532475 DOI: 10.1016/j.psj.2024.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024] Open
Abstract
Avian pox is a disease that has devastating impacts on both poultry and wild bird species. Avian pox is caused by various strains of avipoxviruses (APV). Nevertheless, the virus has been detected in pigeons and chickens that are raised in backyard areas, leading to substantial financial damage for small-scale producers. There is a lack of comprehensive information regarding the transmission of APV among birds in the backyards and residential areas. Hence, the present investigation closely monitored and observed APV in domesticated birds residing in backyard areas, with the aim of impeding the transmission of the virus to nearby poultry farms. In 2023, a total of fifty backyard flocks were surveyed for the presence of avian pox disease. Sixteen backyards (14 pigeons and 2 chickens) exhibited warty nodular lesions on their heads and nonfeathered body parts. APV was confirmed in nodular lesions by polymerase chain reaction (PCR) amplification and genetic sequencing. All samples from the lesions showed successful amplification of the p4b locus (core protein p4b). Four confirmed samples were tested for pathogenicity on the chicken embryo chorioallantoic membrane (CAM). Histopathological examination revealed ballooning degeneration and numerous intracytoplasmic inclusion bodies (Bollinger bodies) in the ectoderm of the infected CAM. Phylogenetic analysis revealed that the strains clustered into main clade A, with 11 in subclade A2 and 5 in subclade A1. Amino acid identity showed 100% similarity between the vaccine (fowlpox/VSVRI/Egypt) and some detected strains (PP537574 and PP537575). In addition, the PP537576.1 to PP537580.1 and PP537582.1 to PP537585.1 had 2-point mutations compared to the fowlpox/VSVRI/Egypt vaccine. The overall finding of low biosecurity levels in the investigated backyard birds emphasizes the significance of establishing sanitary measures and control vectors to reduce virus transmission routes and disease severity. In conclusion, it is necessary to emphasize the tracking of APV in backyard birds. Concurrently, we advised enhancing hygiene protocols, vector management, and subsequent vaccination to restrict the occurrence of APV outbreaks and prevent their transmission to neighboring poultry farms. Furthermore, it is crucial to incorporate molecular studies in order to enhance the vaccine seeds for disease management.
Collapse
Affiliation(s)
- Rania I Mohamed
- Department of Pathology, Agricultural Research Center (ARC), Animal Health Research Institute- Mansoura Provincial Laboratory (AHRI-Mansoura), Mansoura, 35511, Egypt
| | - Hanaa A Elsamadony
- Department of Poultry Diseases, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza, 12618, Egypt
| | - Rana A Alghamdi
- Department of Chemistry, Science and Arts College, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | | | - Ahmed El-Shemy
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Sameh Abdel-Moez Amer
- Department of Poultry Diseases, Veterinary Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Safia M A Bahshwan
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Hemat S El-Sayed
- Department of Poultry Diseases, Benha-Branch, Agricultural Research Center (ARC), Animal Health Research Institute, Benha, 13511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Aalaa S A Saad
- Department of Biotechnology, Agricultural Research Center (ARC), Animal Health Research Institute (AHRI), Giza, 12618, Egypt
| |
Collapse
|
3
|
Sprygin A, Mazloum A, van Schalkwyk A, Babiuk S. Capripoxviruses, leporipoxviruses, and orthopoxviruses: Occurrences of recombination. Front Microbiol 2022; 13:978829. [PMID: 36274700 PMCID: PMC9584655 DOI: 10.3389/fmicb.2022.978829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Poxviruses are double-stranded DNA viruses with several members displaying restricted host ranges. They are genetically stable with low nucleotide mutation rates compared to other viruses, due to the poxviral high-fidelity DNA polymerase. Despite the low accumulation of mutations per replication cycle, poxvirus genomes can recombine with each other to generate genetically rearranged viruses through recombination, a process directly associated with replication and the aforementioned DNA polymerase. Orthopoxvirus replication is intimately tethered to high frequencies of homologous recombination between co-infecting viruses, duplicated sequences of the same virus, and plasmid DNA transfected into poxvirus-infected cells. Unfortunately, the effect of these genomic alterations on the cellular context for all poxviruses across the family Poxviridae remains elusive. However, emerging sequence data on currently circulating and archived poxviruses, such as the genera orthopoxviruses and capripoxviruses, display a wide degree of divergence. This genetic variability cannot be explained by clonality or genetic drift alone, but are probably a result of significant genomic alterations, such as homologous recombination, gene loss and gain, or gene duplications as the major selection forces acting on viral progeny. The objective of this review is to cross-sectionally overview the currently available findings on natural and laboratory observations of recombination in orthopoxviruses, capripoxviruses, and leporipoxviruses, as well as the possible mechanisms involved. Overall, the reviewed available evidence allows us to conclude that the current state of knowledge is limited in terms of the relevance of genetic variations across even a genus of poxviruses as well as fundamental features governing and precipitating intrinsic gene flow and recombination events.
Collapse
Affiliation(s)
- Alexander Sprygin
- Federal Center for Animal Health, Vladimir, Russia
- *Correspondence: Alexander Sprygin,
| | - Ali Mazloum
- Federal Center for Animal Health, Vladimir, Russia
| | | | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| |
Collapse
|
4
|
The co-administration of live fowlpox and Newcastle disease vaccines by non-invasive routes to chickens reared by smallholders in Tanzania and Nepal. Trop Anim Health Prod 2022; 54:315. [PMID: 36149524 PMCID: PMC9508032 DOI: 10.1007/s11250-022-03250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/29/2022] [Indexed: 12/03/2022]
Abstract
The co-administration of commercial live fowlpox (FP) and Newcastle disease (ND) vaccines when given by non-invasive (needle-free) routes was demonstrated to be safe and to elicit immunity in two field studies, one in Tanzania the other in Nepal. Both studies were of a cluster-randomised controlled design in which birds were randomly assigned to one of five treatment groups: (i) administration with FP vaccine alone (feather follicle), (ii) administration with ND vaccine alone (eye-drop), (iii) concurrent administration of FP (feather follicle) and ND (eye-drop) vaccines, (iv) concurrent administration of FP (wing-web) and ND (eye-drop) vaccines, and (v) unvaccinated, acting as environmental sentinels. Data from a total of 1167 birds from seven villages in Hanang District of Tanzania together with 1037 birds from eleven villages in Dhading District of Nepal were collected over a period of 21 and 28 days, respectively. Immune responses to FP vaccination were evaluated by local take reactions, while those to ND vaccination were evaluated serologically by haemagglutination inhibition test. The two studies demonstrated that the concurrent vaccination of free-range, indigenous breeds of chicken with live FP and ND vaccines, both administered by non-invasive routes, was safe and induced immunity against FP and ND that were non-inferior to the administration of FP and ND vaccines alone. These findings are important to appropriately trained small-scale backyard poultry farmers as well as to paraprofessionals and community health workers helping to increase vaccine uptake and the control of both FP and ND in low- to middle-income countries.
Collapse
|