1
|
Volpe DA. Application of transporter assays for drug discovery and development: an update of the literature. Expert Opin Drug Discov 2024; 19:1247-1257. [PMID: 39105537 DOI: 10.1080/17460441.2024.2387790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Determining whether a new drug is a substrate, inhibitor or inducer of efflux or uptake membrane transporters has become a routine process during drug discovery and development. In vitro assays are utilized to establish whether a new drug has the potential to be an object (substrate) or precipitant (inhibitor, inducer) in transporter-mediated clinical drug-drug interactions. The findings from these in vitro experiments are then used to determine whether further in vivo drug interaction studies are necessary for a new drug. AREAS COVERED This article provides an update on in vitro transporter assays, focusing on new uses of transfected cells, time-dependent inhibition, transporter induction, and complex model systems. EXPERT OPINION The newer in vitro assays add to the toolbox in defining new drugs as transporter substrates, inhibitors, or inducers. Complex models such as spheroids, organoids, and microphysiological systems require standardization and further research with model transporter substrates and inhibitors. In drug discovery, the more traditional transporter assays may be employed as substrate and inhibitor screening assays. In drug development, more complex cell models can be employed in later drug development to better understand how transporter(s) are involved in the absorption, distribution, and excretion of new drugs.
Collapse
Affiliation(s)
- Donna A Volpe
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
2
|
Kamath A, Srinivasamurthy SK, Chowta MN, Ullal SD, Daali Y, Chakradhara Rao US. Role of Drug Transporters in Elucidating Inter-Individual Variability in Pediatric Chemotherapy-Related Toxicities and Response. Pharmaceuticals (Basel) 2022; 15:990. [PMID: 36015138 PMCID: PMC9415926 DOI: 10.3390/ph15080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric cancer treatment has evolved significantly in recent decades. The implementation of risk stratification strategies and the selection of evidence-based chemotherapy combinations have improved survival outcomes. However, there is large interindividual variability in terms of chemotherapy-related toxicities and, sometimes, the response among this population. This variability is partly attributed to the functional variability of drug-metabolizing enzymes (DME) and drug transporters (DTS) involved in the process of absorption, distribution, metabolism and excretion (ADME). The DTS, being ubiquitous, affects drug disposition across membranes and has relevance in determining chemotherapy response in pediatric cancer patients. Among the factors affecting DTS function, ontogeny or maturation is important in the pediatric population. In this narrative review, we describe the role of drug uptake/efflux transporters in defining pediatric chemotherapy-treatment-related toxicities and responses. Developmental differences in DTS and the consequent implications are also briefly discussed for the most commonly used chemotherapeutic drugs in the pediatric population.
Collapse
Affiliation(s)
- Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Mukta N Chowta
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Sheetal D Ullal
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Youssef Daali
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Uppugunduri S Chakradhara Rao
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
3
|
Wu W, Cheng R, Jiang Z, Zhang L, Huang X. UPLC-MS/MS method for the simultaneous quantification of pravastatin, fexofenadine, rosuvastatin, and methotrexate in a hepatic uptake model and its application to the possible drug-drug interaction study of triptolide. Biomed Chromatogr 2021; 35:e5093. [PMID: 33634891 DOI: 10.1002/bmc.5093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 11/07/2022]
Abstract
A rapid and specific UPLC-MS/MS method with a total run time of 3.5 min was developed for the determination of pravastatin, fexofenadine, rosuvastatin, and methotrexate in rat primary hepatocytes. After protein precipitation with 70% acetonitrile (containing 30% H2 O), these four analytes were separated under gradient conditions with a mobile phase consisting of 0.03% acetic acid (v/v) and methanol at a flow rate of 0.50 mL/min. The linearity, recovery, matrix effect, accuracy, precision, and stability of the method were well validated. We evaluated drug-drug interactions based on these four compounds in freshly suspended hepatocytes. The hepatic uptake of pravastatin, fexofenadine, rosuvastatin, and methotrexate at 4°C was significantly lower than that at 37°C, and the hepatocytes were saturable with increased substrate concentration and culture time, suggesting that the rat primary hepatocyte model was successfully established. Triptolide showed a significant inhibitory effect on the hepatic uptake of these four compounds. In conclusion, this method was successfully employed for the quantification of pravastatin, fexofenadine, rosuvastatin, and methotrexate and was used to verify the rat primary hepatocyte model for Oatp1, Oatp2, Oatp4, and Oat2 transporter studies. Then, we applied this model to explore the effect of triptolide on these four transporters.
Collapse
Affiliation(s)
- Wei Wu
- New drug screening center, Institute of Pharmaceutical Research, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Rui Cheng
- New drug screening center, Institute of Pharmaceutical Research, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Zhenzhou Jiang
- New drug screening center, Institute of Pharmaceutical Research, China Pharmaceutical University, Nanjing, China
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin Huang
- New drug screening center, Institute of Pharmaceutical Research, China Pharmaceutical University, Nanjing, China
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Izat N, Sahin S. Hepatic transporter-mediated pharmacokinetic drug-drug interactions: Recent studies and regulatory recommendations. Biopharm Drug Dispos 2021; 42:45-77. [PMID: 33507532 DOI: 10.1002/bdd.2262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Transporter-mediated drug-drug interactions are one of the major mechanisms in pharmacokinetic-based drug interactions and correspondingly affecting drugs' safety and efficacy. Regulatory bodies underlined the importance of the evaluation of transporter-mediated interactions as a part of the drug development process. The liver is responsible for the elimination of a wide range of endogenous and exogenous compounds via metabolism and biliary excretion. Therefore, hepatic uptake transporters, expressed on the sinusoidal membranes of hepatocytes, and efflux transporters mediating the transport from hepatocytes to the bile are determinant factors for pharmacokinetics of drugs, and hence, drug-drug interactions. In parallel with the growing research interest in this area, regulatory guidances have been updated with detailed assay models and criteria. According to well-established preclinical results, observed or expected hepatic transporter-mediated drug-drug interactions can be taken into account for clinical studies. In this paper, various methods including in vitro, in situ, in vivo, in silico approaches, and combinational concepts and several clinical studies on the assessment of transporter-mediated drug-drug interactions were reviewed. Informative and effective evaluation by preclinical tools together with the integration of pharmacokinetic modeling and simulation can reduce unexpected clinical outcomes and enhance the success rate in drug development.
Collapse
Affiliation(s)
- Nihan Izat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Ma Z, Lu S, Zhou H, Zhang S, Wang Y, Lin N. Determination of intracellular anlotinib, osimertinib, afatinib and gefitinib accumulations in human brain microvascular endothelial cells by liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8955. [PMID: 32990383 DOI: 10.1002/rcm.8955] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Brain metastases are a common complication in patients with non-small-cell lung cancer (NSCLC). Anlotinib hydrochloride is a novel multi-target tyrosine kinase inhibitor (TKI) exhibiting a superior overall response rate for brain metastases from NSCLC. The penetrability of anlotinib and three generations of epidermal growth factor receptor (EGFR) TKIs (osimertinib, afatinib and gefitinib) into brain microvascular endothelial cells (HBMECs) was compared. METHODS A sensitive quantification method for the four TKIs was developed using liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS). Anlotinib and the three EGFR TKIs were separated on an ACQUITY BEH C18 column after a direct protein precipitation, and then analyzed using electrospray ionization in positive ion mode. The linearity, accuracy, precision, limit of quantification, specificity and stability were assessed. RESULTS The four analytes could be efficiently quantified in a single run of 3.8 min. The validation parameters of all analytes satisfy the acceptance criteria of bioanalytical method guidelines. The calibration range was 0.2-200 ng mL-1 for anlotinib and gefitinib, 1-500 ng mL-1 for osimertinib and 1-200 ng mL-1 for afatinib. The penetration of anlotinib across HBMECs was comparable with that of afatinib and gefitinib but less than that of osimertinib. CONCLUSIONS A sensitive LC/MS/MS method to simultaneously measure anlotinib, osimertinib, afatinib and gefitinib in cell extracts was successfully validated and applied to determine their uptake inside HBMECs, which could pave the way for future research on the role of anlotinib in NSCLC brain metastases.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Shuanghui Lu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| | - Hui Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| | - Shirong Zhang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Yuqing Wang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Nengming Lin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| |
Collapse
|
6
|
Impact of histamine type-2 receptor antagonists on the anticancer efficacy of gefitinib in patients with non-small cell lung cancer. Eur J Clin Pharmacol 2020; 77:381-388. [PMID: 33029650 DOI: 10.1007/s00228-020-03013-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/01/2020] [Indexed: 01/23/2023]
Abstract
PURPOSE Gefitinib is one of the standard treatments for non-small cell lung cancer (NSCLC) with epidermal growth factor receptor mutations. It has been reported that acid suppressants (AS) decrease the anti-tumor effect of gefitinib by reducing its solubility. AS is sometimes necessary in cancer patients; however, previous reports have not shown the most compatible AS with gefitinib administration in cancer patients. This study was conducted to determine if histamine type 2 receptor antagonists (H2RAs) can affect the anti-tumor efficacy of gefitinib. METHODS Eighty-seven patients with NSCLC who were administered gefitinib were retrospectively investigated. Patients who were co-administered H2RA were compared with non-AS control patients. H2RA was administered once a day at about 3-5 or 8-12 h after gefitinib intake. The primary endpoint of this study was progression-free survival (PFS), and secondary endpoints were overall survival (OS), overall response rate (ORR), and adverse effects. RESULTS Median PFS in H2RA group and control group was 8.0 months and 9.0 months, respectively, with no significant difference (p = 0.82). The incidence of liver dysfunction was significantly less in patients administered H2RA, whereas there were no differences between the two groups with regard to skin toxicity and diarrhea. Multivariate analysis suggested that H2RA co-administration is not a risk factor for worse PFS and OS (hazard ratio of 0.95, 0.86; 95% confidence interval of 0.60-1.48, 0.52-1.43; p = 0.82 and 0.60, respectively). CONCLUSION This study demonstrated that concomitant administration of H2RA with gefitinib does not affect the efficacy of gefitinib.
Collapse
|
7
|
Garrison DA, Talebi Z, Eisenmann ED, Sparreboom A, Baker SD. Role of OATP1B1 and OATP1B3 in Drug-Drug Interactions Mediated by Tyrosine Kinase Inhibitors. Pharmaceutics 2020; 12:E856. [PMID: 32916864 PMCID: PMC7559291 DOI: 10.3390/pharmaceutics12090856] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
Failure to recognize important features of a drug's pharmacokinetic characteristics is a key cause of inappropriate dose and schedule selection, and can lead to reduced efficacy and increased rate of adverse drug reactions requiring medical intervention. As oral chemotherapeutic agents, tyrosine kinase inhibitors (TKIs) are particularly prone to cause drug-drug interactions as many drugs in this class are known or suspected to potently inhibit the hepatic uptake transporters OATP1B1 and OATP1B3. In this article, we provide a comprehensive overview of the published literature and publicly-available regulatory documents in this rapidly emerging field. Our findings indicate that, while many TKIs can potentially inhibit the function of OATP1B1 and/or OATP1B3 and cause clinically-relevant drug-drug interactions, there are many inconsistencies between regulatory documents and the published literature. Potential explanations for these discrepant observations are provided in order to assist prescribing clinicians in designing safe and effective polypharmacy regimens, and to provide researchers with insights into refining experimental strategies to further predict and define the translational significance of TKI-mediated drug-drug interactions.
Collapse
Affiliation(s)
| | | | | | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (D.A.G.); (Z.T.); (E.D.E.)
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (D.A.G.); (Z.T.); (E.D.E.)
| |
Collapse
|
8
|
Ogura J, Yamaguchi H, Mano N. Stimulatory effect on the transport mediated by organic anion transporting polypeptide 2B1. Asian J Pharm Sci 2020; 15:181-191. [PMID: 32373198 PMCID: PMC7193449 DOI: 10.1016/j.ajps.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Drug-drug interaction (DDI) is one of causes of adverse drug events and can result in life-threatening consequences. Organic anion-transporting polypeptide (OATP) 2B1 is a major uptake transporter in the intestine and contributes to transport various clinically used therapeutic agents. The intestine has a high risk of DDI, because it has a special propensity to be exposed to a high concentration of drugs. Thus, understanding drug interaction mediated by OATP2B1 in the absorption process is important for the prevention of adverse drug events, including decrease in the therapeutic effect of co-administered drugs. Acute drug interaction occurs through the direct inhibitory effect on transporters, including OATP2B1. Moreover, some compounds such as clinically used drugs and food components have an acute stimulatory effect on transport of co-administered drugs by OATP2B1. This review summarizes the acute stimulatory effect on the transport mediated by OATP2B1 and discusses the mechanisms of the acute stimulatory effects of compounds. There are two types of acute stimulatory effects, substrate-independent and -dependent interactions on OATP2B1 function. The facilitating translocation of OATP2B1 to the plasma membrane is one of causes for the substrate-independent acute stimulatory effect. On the contrary, the substrate-dependent effect is based on the direct binding to the substrate-binding site or allosteric progesterone-binding site of OATP2B1.
Collapse
Affiliation(s)
- Jiro Ogura
- Corresponding author. Tohoku University Hospital, Department of Pharmaceutical Sciences, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan. Tel.: +81 22 7177541
| | | | | |
Collapse
|
9
|
Clairet AL, Boiteux-Jurain M, Curtit E, Jeannin M, Gérard B, Nerich V, Limat S. Interaction between phytotherapy and oral anticancer agents: prospective study and literature review. Med Oncol 2019; 36:45. [PMID: 30993543 DOI: 10.1007/s12032-019-1267-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022]
Abstract
Cancer is becoming more prevalent in elderly patient. Due to polypharmacy, older adults with cancer are predisposed to drug-drug interactions. There is also an increasing interest in the use of complementary and alternative medicine (CAM). Thirty to seventy percent of patients with cancer have used CAM. Through pharmaceutical counseling sessions, we can provide advices on herb-drug interactions (HDI). All the patients seen in pharmaceutical counseling sessions were prospectively included. Information was collected during these sessions: prescribed medication (oral anticancer agents (OAA) and other drugs), CAM (phytotherapy especially), and use of over-the-counter (OTC) drugs. If pharmacist considered an interaction or an intervention clinically relevant, the oncologist was notified. Then, a literature review was realized to identify the potential HDI (no interactions, precautions for use, contraindication). Among 201 pharmacist counseling sessions, it resulted in 104 interventions related to 46 HDI, 28 drug-drug interactions and 30 others (wrong dosage, omission…). To determine HDI, we review 73 medicinal plants which are used by our patients with cancer and 31 OAA. A total of 1829 recommendations were formulated about 59 (75%) medical plants and their interaction with an OAA. Herb-drug interactions should not be ignored by healthcare providers in their management of cancer patients in daily practice.
Collapse
Affiliation(s)
- Anne-Laure Clairet
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| | - Marie Boiteux-Jurain
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Elsa Curtit
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
- Department of Medical Oncology, University Hospital of Besançon, 25000, Besançon, France
| | - Marie Jeannin
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Blandine Gérard
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Virginie Nerich
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France.
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France.
| | - Samuel Limat
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| |
Collapse
|
10
|
Puccini A, Marín-Ramos NI, Bergamo F, Schirripa M, Lonardi S, Lenz HJ, Loupakis F, Battaglin F. Safety and Tolerability of c-MET Inhibitors in Cancer. Drug Saf 2019; 42:211-233. [PMID: 30649748 PMCID: PMC7491978 DOI: 10.1007/s40264-018-0780-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of aberrant hepatocyte growth factor receptor (c-MET, also known as tyrosine-protein kinase MET)/hepatocyte growth factor (HGF) signaling in cancer progression and invasion has been extensively studied. c-MET inhibitors have shown promising pre-clinical and early phase clinical trial anti-tumor activity in several tumor types, although results of most phase III trials with these agents have been negative. To date, two small molecule c-MET inhibitors, cabozantinib and crizotinib, have been approved by regulatory authorities for the treatment of selected cancer types, but several novel c-MET inhibitors (either monoclonal antibodies or small molecule c-MET tyrosine kinase inhibitors) and treatment combinations are currently under study in different settings. Here we provide an overview of the mechanism of action and rationale of c-MET inhibition in cancer, the efficacy of approved agents, and novel promising c-MET-inhibitors and novel targeted combination strategies under development in different cancer types, with a focus on the safety profile and tolerability of these compounds.
Collapse
Affiliation(s)
- Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA, 90033, USA
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nagore I Marín-Ramos
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francesca Bergamo
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marta Schirripa
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Sara Lonardi
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA, 90033, USA
| | - Fotios Loupakis
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA, 90033, USA.
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
11
|
Navrátilová L, Applová L, Horký P, Mladěnka P, Pávek P, Trejtnar F. Interaction of soy isoflavones and their main metabolites with hOATP2B1 transporter. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:1063-1071. [PMID: 29934673 DOI: 10.1007/s00210-018-1528-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022]
Abstract
Membrane organic anion-transporting polypeptides (OATPs) are responsible for the drug transmembrane transport within the human body. The function of OATP2B1 transporter can be inhibited by various natural compounds. Despite increased research interest in soya as a part of human diet, the effect of its active components to interact with hOATP2B1 has not been elucidated in a complex extent. This in vitro study examined the inhibitory effect of main soy isoflavones (daidzin, daidzein, genistin, genistein, glycitin, glycitein, biochanin A, formononetin) and their metabolites formed in vivo (S-equol, O-desmethylangolensin) towards human OATP2B1 transporter. MDCKII cells overexpressing hOATP2B1 were employed to determine quantitative inhibitory parameters of the tested compounds and to analyze mechanism/s of the inhibitory interaction. The study showed that aglycones of soy isoflavones and the main biologically active metabolite S-equol were able to significantly inhibit hOATP2B1-mediated transport. The Ki values for most of aglycones range from 1 to 20 μM. In contrast, glucosides did not exhibit significant inhibitory effect. The kinetic analysis did not indicate a uniform type of inhibition towards the hOATP2B1 although predominant mechanism of inhibition seemed to be competitive. These findings may suggest that tested soy isoflavones and their metabolites might affect transport of xenobiotics including drugs across tissue barriers via hOATP2B1.
Collapse
Affiliation(s)
- Lucie Navrátilová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lenka Applová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Pavel Horký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - František Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
12
|
Clinical Pharmacokinetics of Anaplastic Lymphoma Kinase Inhibitors in Non-Small-Cell Lung Cancer. Clin Pharmacokinet 2018; 58:403-420. [DOI: 10.1007/s40262-018-0689-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Bauer M, Matsuda A, Wulkersdorfer B, Philippe C, Traxl A, Özvegy-Laczka C, Stanek J, Nics L, Klebermass EM, Poschner S, Jäger W, Patik I, Bakos É, Szakács G, Wadsak W, Hacker M, Zeitlinger M, Langer O. Influence of OATPs on Hepatic Disposition of Erlotinib Measured With Positron Emission Tomography. Clin Pharmacol Ther 2017; 104:139-147. [PMID: 28940241 PMCID: PMC6083370 DOI: 10.1002/cpt.888] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/09/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022]
Abstract
To assess the hepatic disposition of erlotinib, we performed positron emission tomography (PET) scans with [11 C]erlotinib in healthy volunteers without and with oral pretreatment with a therapeutic erlotinib dose (300 mg). Erlotinib pretreatment significantly decreased the liver exposure to [11 C]erlotinib with a concomitant increase in blood exposure, pointing to the involvement of a carrier-mediated hepatic uptake mechanism. Using cell lines overexpressing human organic anion-transporting polypeptides (OATPs) 1B1, 1B3, or 2B1, we show that [11 C]erlotinib is selectively transported by OATP2B1. Our data suggest that at PET microdoses hepatic uptake of [11 C]erlotinib is mediated by OATP2B1, whereas at therapeutic doses OATP2B1 transport is saturated and hepatic uptake occurs mainly by passive diffusion. We propose that [11 C]erlotinib may be used as a hepatic OATP2B1 probe substrate and erlotinib as an OATP2B1 inhibitor in clinical drug-drug interaction studies, allowing the contribution of OATP2B1 to the hepatic uptake of drugs to be revealed.
Collapse
Affiliation(s)
- Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Akihiro Matsuda
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Cécile Philippe
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexander Traxl
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Johann Stanek
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Lukas Nics
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Eva-Maria Klebermass
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan Poschner
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Izabel Patik
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.,Center for Biomarker Research in Medicine, CBmed GmbH, Graz, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.,Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| |
Collapse
|
14
|
Sato T, Mishima E, Mano N, Abe T, Yamaguchi H. Potential Drug Interactions Mediated by Renal Organic Anion Transporter OATP4C1. J Pharmacol Exp Ther 2017; 362:271-277. [PMID: 28550055 DOI: 10.1124/jpet.117.241703] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
Abstract
Organic anion-transporting polypeptide 4C1 (OATP4C1) is an organic anion transporter expressed in the basolateral membrane of the renal proximal tubules. It plays a major role in the urinary excretion of both exogenous drugs and endogenous compounds. Our previous studies have indicated the importance of OATP4C1 in pathologic and physiologic conditions; however, the majority of its pharmacologic characteristics remained unclear. Therefore, to provide essential information for clinical drug therapy decisions and drug development, we clarified drug interactions mediated by OATP4C1. To elucidate potential drug interactions via OATP4C1, we screened 53 representative drugs commonly used in clinical settings. Next, we evaluated the IC50 values of drugs that inhibited OATP4C1 by more than 50%. To apply our results to clinical settings, we calculated the drug-drug interaction (DDI) indices. The screening analysis using an OATP4C1-expressing cell system demonstrated that 22 out of 53 therapeutic drugs inhibited OATP4C1-mediated triiodothyronine transport. In particular, OATP4C1-mediated transport was strongly inhibited by 10 drugs. The IC50 values of 10 drugs-nicardipine, spironolactone, fluvastatin, crizotinib, levofloxacin, clarithromycin, ritonavir, saquinavir, quinidine, and verapamil-obtained in this study were 51, 53, 41, 24, 420, 200, 8.5, 4.3, 100, and 110 µM, respectively. The IC50 values of these drugs were higher than the plasma concentrations obtained in clinical practice. However, ritonavir showed the highest DDI index (1.9) for OATP4C1, suggesting that it may strongly influence this transporter and thus cause drug interactions seen in clinical settings. Our finding gives new insight into the role of OATP4C1 in clinical DDIs.
Collapse
Affiliation(s)
- Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital (T.S., N.M., H.Y.); Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine (E.M., T.A.); Division of Medical Science, Graduate School of Biomedical Engineering (T.A.); Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine (T.A.), Tohoku University, Sendai, Japan
| | - Eikan Mishima
- Department of Pharmaceutical Sciences, Tohoku University Hospital (T.S., N.M., H.Y.); Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine (E.M., T.A.); Division of Medical Science, Graduate School of Biomedical Engineering (T.A.); Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine (T.A.), Tohoku University, Sendai, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital (T.S., N.M., H.Y.); Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine (E.M., T.A.); Division of Medical Science, Graduate School of Biomedical Engineering (T.A.); Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine (T.A.), Tohoku University, Sendai, Japan
| | - Takaaki Abe
- Department of Pharmaceutical Sciences, Tohoku University Hospital (T.S., N.M., H.Y.); Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine (E.M., T.A.); Division of Medical Science, Graduate School of Biomedical Engineering (T.A.); Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine (T.A.), Tohoku University, Sendai, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital (T.S., N.M., H.Y.); Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine (E.M., T.A.); Division of Medical Science, Graduate School of Biomedical Engineering (T.A.); Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine (T.A.), Tohoku University, Sendai, Japan
| |
Collapse
|