1
|
Kiełbowski K, Król M, Bakinowska E, Pawlik A. The Role of ABCB1, ABCG2, and SLC Transporters in Pharmacokinetic Parameters of Selected Drugs and Their Involvement in Drug-Drug Interactions. MEMBRANES 2024; 14:223. [PMID: 39590609 PMCID: PMC11596214 DOI: 10.3390/membranes14110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Membrane transporters are expressed in a wide range of tissues in the human organism. These proteins regulate the penetration of various substances such as simple ions, xenobiotics, and an extensive number of therapeutics. ABC and SLC drug transporters play a crucial role in drug absorption, distribution, and elimination. Recent decades have shown their contribution to the systemic exposure and tissue penetration of numerous drugs, thereby having an impact on pharmacokinetic and pharmacodynamic parameters. Importantly, the activity and expression of these transporters depend on numerous conditions, including intestinal microbiome profiles or health conditions. Moreover, the combined intake of other drugs or natural agents further affects the functionality of these proteins. In this review, we will discuss the involvement of ABC and SLC transporters in drug disposition. Moreover, we will present current evidence of the potential role of drug transporters as therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (M.K.); (E.B.)
| |
Collapse
|
2
|
Fan H, Zhang A, Liao C, Yang Y, Zhang L, Liu J, Xia Y, Si D, Dong S, Liu C. In vitro metabolism and in vivo pharmacokinetics of bentysrepinine (Y101), an investigational new drug for anti-HBV-infected hepatitis: focus on interspecies comparison. Xenobiotica 2019; 50:468-478. [PMID: 31329010 DOI: 10.1080/00498254.2019.1646946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The objective of this study was to clarify the species differences of pharmacokinetics of Y101 (N-[N-benzoyl-O-(2-dimethylaminoethyl)-l-tyrosyl]-l-phenylalaninol hydrochloride), a derivative of herbal ingredient with anti-HBV hepatitis activity, in rats, dogs, monkeys and humans.The metabolic stability and metabolite identification studies using liver microsomes in vitro, plasma protein binding using a rapid equilibrium dialysis in vitro, pharmacokinetic studies in vivo were carried out to evaluate the interspecies differences. The toxicokinetic study in monkeys was also investigated.The metabolic profiles were similar in monkeys and humans, which were significant different from rats and dogs in vitro. In vitro plasma protein binding showed no major differences between species with medium to high protein binding rates. After single oral dose to rats, dogs, and monkeys, the absolute oral bioavailability of Y101 was 44.9%, 43.1%, and 19.2%, respectively. There was no accumulation for Y101 toxicokinetics in monkeys after oral administration for 90 d.The metabolic profiles indicated monkey was the very animal model for preclinical safety evaluation of Y101. Our results have demonstrated the favorable pharmacokinetics profile of Y101, which supports the clinical trials in humans.
Collapse
Affiliation(s)
- Huirong Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Aijie Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Cuiping Liao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanhui Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lihua Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuanyuan Xia
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Duanyun Si
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Shiqi Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Changxiao Liu
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| |
Collapse
|