1
|
Kharasch ED, Lenze EJ. Pharmacogenetic Influence on Stereoselective Steady-State Disposition of Bupropion. Drug Metab Dispos 2024; 52:455-466. [PMID: 38467432 PMCID: PMC11023817 DOI: 10.1124/dmd.124.001697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024] Open
Abstract
Bupropion is used for treating depression, obesity, and seasonal affective disorder, and for smoking cessation. Bupropion is commonly prescribed, but has complex pharmacokinetics and interindividual variability in metabolism and bioactivation may influence therapeutic response, tolerability, and safety. Bupropion is extensively and stereoselectively metabolized, the metabolites are pharmacologically active, and allelic variation in cytochrome P450 (CYP) 2B6 affects clinical hydroxylation of single-dose bupropion. Genetic effects on stereoselective disposition of steady-state bupropion are not known. In this preplanned secondary analysis of a prospective, randomized, double-blinded, crossover study which compared brand and generic bupropion XL 300 mg drug products, we measured steady-state enantiomeric plasma and urine parent bupropion and primary and secondary metabolite concentrations. This investigation evaluated the influence of genetic polymorphisms in CYP2B6, CYP2C19, and P450 oxidoreductase on the disposition of Valeant Pharmaceuticals Wellbutrin brand bupropion in 67 participants with major depressive disorder. We found that hydroxylation of both bupropion enantiomers was lower in carriers of the CYP2B6*6 allele and in carriers of the CYP2B6 516G>T variant, with correspondingly greater bupropion and lesser hydroxybupropion plasma concentrations. Hydroxylation was 25-50% lower in CYP2B6*6 carriers and one-third to one-half less in 516T carriers. Hydroxylation of the bupropion enantiomers was comparably affected by CYP2B6 variants. CYP2C19 polymorphisms did not influence bupropion plasma concentrations or hydroxybupropion formation but did influence the minor pathway of 4'-hydroxylation of bupropion and primary metabolites. P450 oxidoreductase variants did not influence bupropion disposition. Results show that CYP2B6 genetic variants affect steady-state metabolism and bioactivation of Valeant brand bupropion, which may influence therapeutic outcomes. SIGNIFICANCE STATEMENT: Bupropion, used for depression, obesity, and smoking cessation, undergoes metabolic bioactivation, with incompletely elucidated interindividual variability. We evaluated cytochrome P450 (CYP) 2B6, CYP2C19 and P450 oxidoreductase genetic variants and steady-state bupropion and metabolite enantiomers disposition. Both enantiomers hydroxylation was lower in CYP2B6*6 and CYP2B6 516G>T carriers, with greater bupropion and lesser hydroxybupropion plasma concentrations. CYP2C19 polymorphisms did not affect bupropion or hydroxybupropion but did influence minor 4'-hydroxylation of bupropion and primary metabolites. CYP2B6 variants affect steady-state bupropion bioactivation, which may influence therapeutic outcomes.
Collapse
Affiliation(s)
- Evan D Kharasch
- Department of Anesthesiology, Duke University, Durham, North Carolina (E.D.K.); Bermaride, LLC (E.D.K.); and Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri (E.J.L.)
| | - Eric J Lenze
- Department of Anesthesiology, Duke University, Durham, North Carolina (E.D.K.); Bermaride, LLC (E.D.K.); and Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri (E.J.L.)
| |
Collapse
|
2
|
Zhong J, Liu X, Chen L, Li K, Hu Q, Wu K, Zhou J, Shi Y, Fan H. Simultaneous separation and determination of several chiral antidepressants and their enantiomers in wastewater by online heart-cutting two-dimensional liquid chromatography. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115302. [PMID: 37506440 DOI: 10.1016/j.ecoenv.2023.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
A novel method for simultaneous separation and detection of the racemates and the enantiomers of common chiral antidepressants in wastewater matrix was developed by online heart-cutting two-dimensional liquid chromatography (2D-LC) coupled to solid-phase extraction (SPE). Screening of chiral stationary phases (CSPs) and chromatographic conditions was investigated for complete enantioseparation to be compatible with RP-HPLC in 1st D-LC. Using methanol-0.1 % (v/v) ammonia solution as mobile phase, a 2D-LC system was configured by reversed mode with a combination of C18 column and the serially CPS columns as 2D-LC stationary phases respectively. The target analytes could achieve satisfactory transformation between 2D-LCs with transfer rate of 90.57-98.58 %. By means of freeze-drying and SPE, three antidepressants in wastewater were greatly preconcentrated under the optimized conditions, improving the method performance. The racemates and the enantiomers of mirtazapine, bupropion and fluoxetine exhibited good linearity in the range of 0.10-30.00 ng/mL (R2≥0.9986), and LODs and LOQs ranged in 0.0183-0.0549 ng/mL and 0.0661-0.1831 ng/mL, respectively. By this way, the method was successfully applied to simultaneous determination of the racemates and the enantiomers of mirtazapine, bupropion and fluoxetine in wastewater samples. Among them, three samples contained bupropion at level of 0.401-0.822 ng/mL, and mirtazapine at level of 0.328 and fluoxetine at level of 0.381 ng/mL were detected respectively in the other two samples. The enantiomers were at level of 0.140-0.189 ng/mL for mirtazapine, 0.182-0.419 ng/mL for bupropion and 0.179-0.204 ng/mL for fluoxetine, respectively. The proposed method providing an efficient approach to monitoring chiral drugs and their enantiomers in wastewater, facilitating to pollution assessment of chiral drugs in the environment and regional survey of illicit abuse in drug control.
Collapse
Affiliation(s)
- Jinjian Zhong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou 510535, China
| | - Xin Liu
- Anti-Drug Technology Center of Guangdong Province, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Linzhou Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou 510535, China
| | - Kan Li
- Anti-Drug Technology Center of Guangdong Province, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Qingkun Hu
- Anti-Drug Technology Center of Guangdong Province, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Ke Wu
- Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou 510535, China
| | - Jidan Zhou
- Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou 510535, China
| | - Yuesen Shi
- Anti-Drug Technology Center of Guangdong Province, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
| | - Huajun Fan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou 510535, China.
| |
Collapse
|
3
|
Bamfo NO, Lu JB, Desta Z. Stereoselective Metabolism of Bupropion to Active Metabolites in Cellular Fractions of Human Liver and Intestine. Drug Metab Dispos 2023; 51:54-66. [PMID: 35512805 PMCID: PMC9832377 DOI: 10.1124/dmd.122.000867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 04/12/2022] [Indexed: 01/14/2023] Open
Abstract
Striking stereoselective disposition of the antidepressant and smoking cessation aid bupropion (BUP) and its active metabolites observed clinically influence patients' response to BUP therapy and its clinically important drug-drug interactions (DDI) with CYP2D6 substrates. However, understanding of the biochemical mechanisms responsible is incomplete. This study comprehensively examined hepatic and extrahepatic stereoselective metabolism of BUP in vitro Racemic-, R-, and S-BUP were incubated separately with pooled cellular fractions of human liver [microsomes (HLMs), S9 fractions (HLS9s), and cytosols (HLCs)] and intestinal [microsomes (HIMs), S9 fractions (HIS9s), and cytosols (HICs)] and cofactors. Formations of diastereomers of 4-hydroxyBUP (OHBUP), threohydroBUP (THBUP), and erythrohydroBUP (EHBUP) were quantified using a novel chiral ultra-high performance liquid chromatography/tandem mass spectrometry method. Racemic BUP (but not R- or S-BUP) was found suitable to determine stereoselective metabolism of BUP; both enantiomers showed complete racemization. Compared with that of RR-THBUP, the in vitro intrinsic clearance (Clint) for the formation of SS-THBUP was 42-, 19-, and 8.3-fold higher in HLMs, HLS9 fractions, and HLCs, respectively; Clint for the formation of SS-OHBUP and RS-EHBUP was also higher (2.7- to 3.9-fold) than their R-derived counterparts. In cellular fractions of human intestine, ≥ 95% of total reduction was accounted by the formation of RR-THBUP. Ours is the first to demonstrate marked stereoselective reduction of BUP in HLCs, HIMs, HIS9 fractions, and HICs, providing the first evidence for tissue- and cellular fraction-dependent stereoselective metabolism of BUP. These data may serve as the first critical step toward understanding factors dictating BUP's stereoselective disposition, effects, and DDI risks. SIGNIFICANCE STATEMENT: This work provides a deeper insight into bupropion (BUP) stereoselective oxidation and reduction to active metabolites in cellular fractions of human liver and intestine tissues. The results demonstrate tissue- and cellular fraction-dependent stereospecific metabolism of BUP. These data may improve prediction of BUP stereoselective disposition and understanding of BUP's effects and CYP2D6-dependent drug-drug interaction in vivo.
Collapse
Affiliation(s)
- Nadia O Bamfo
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jessica Bl Lu
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zeruesenay Desta
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
4
|
Gufford BT, Metzger IF, Bamfo NO, Benson EA, Masters AR, Lu JBL, Desta Z.
Influence of CYP2B6 Pharmacogenetics on Stereoselective Inhibition and Induction of Bupropion Metabolism by Efavirenz in Healthy Volunteers.
. J Pharmacol Exp Ther 2022; 382:JPET-AR-2022-001277. [PMID: 35798386 PMCID: PMC9426761 DOI: 10.1124/jpet.122.001277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022] Open
Abstract
We investigated the acute and chronic effects of efavirenz, a widely used antiretroviral drug, and CYP2B6 genotypes on the disposition of racemic and stereoisomers of bupropion (BUP) and its active metabolites, 4-hydroxyBUP, threohydroBUP and erythrohydroBUP. The primary objective of this study was to test how multiple processes unique to the efavirenz-CYP2B6 genotype interaction influence the extent of efavirenz-mediated drug-drug interaction (DDI) with the CYP2B6 probe substrate BUP. In a three-phase, sequential, open-label study, healthy volunteers (N=53) were administered a single 100 mg oral dose of BUP alone (control phase), with a single 600 mg oral efavirenz dose (inhibition phase), and after 17-days pretreatment with efavirenz (600 mg/day) (induction phase). Compared to the control phase, we show for the first time that efavirenz significantly decreases and chronically increases the exposure of hydroxyBUP and its diastereomers, respectively, and these interactions were CYP2B6 genotype dependent. Chronic efavirenz enhances the elimination of racemic BUP and its enantiomers as well as of threo- and erythro-hydroBUP and their diastereomers, suggesting additional novel mechanisms underlying efavirenz interaction with BUP. The effects of efavirenz and genotypes were nonstereospecific. In conclusion, acute and chronic administration of efavirenz inhibits and induces CYP2B6 activity. Efavirenz-BUP interaction is complex involving time- and CYP2B6 genotype-dependent inhibition and induction of primary and secondary metabolic pathways. Our findings highlight important implications to the safety and efficacy of BUP, study design considerations for future efavirenz interactions, and individualized drug therapy based on CYP2B6 genotypes. Significance Statement The effects of acute and chronic doses of efavirenz on the disposition of racemic and stereoisomers of BUP and its active metabolites were investigated in healthy volunteers. Efavirenz causes an acute inhibition, but chronic induction of CYP2B6 in a genotype dependent manner. Chronic efavirenz induces BUP reduction and the elimination of BUP active metabolites. Efavirenz's effects were non-stereospecific. These data reveal novel mechanisms underlying efavirenz DDI with BUP and provide important insights into time- and CYP2B6 genotype dependent DDIs.
Collapse
Affiliation(s)
| | | | - Nadia O Bamfo
- Division of Clinical Pharmacology, Indiana University School of Medicine, United States
| | - Eric A Benson
- Medicine, Indiana University School of Medicine, United States
| | - Andrea R Masters
- Melvin and Bren Simon Comprehensive Cancer Center Clinical Pharmacology Analytical Core, Indiana University School of Medicine, United States
| | - Jessica Bo Li Lu
- Division of Clinical Pharmacology, Indiana University School of Medicine, United States
| | - Zeruesenay Desta
- Medicine/Division of Clinical Pharmacology, Indiana University School of Medicine, United States
| |
Collapse
|
5
|
Saini NK, Gabani BB, Todmal U, Sulochana SP, Kiran V, Zainuddin M, Balaji N, Polina SB, Srinivas NR, Mullangi R. Pharmacokinetics of Darolutamide in Mouse - Assessment of the Disposition of the Diastereomers, Key Active Metabolite and Interconversion Phenomenon: Implications to Cancer Patients. Drug Metab Lett 2021; 14:54-65. [PMID: 32436836 DOI: 10.2174/1872312814666200521091236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Darolutamide is recently approved for the treatment of non-metastatic castrate resistance prostate cancer. Hitherto, no stereoselective pharmacokinetic data have been published pertaining to darolutamide and its diastereomers in animals or humans. The key aims of the experiment were to examine darolutamide, S,S-darolutamide and S,R-darolutamide with respect to (a) assessment of in vitro metabolic stability and protein binding and (b) characterization of in vivo oral and intravenous pharmacokinetics in mice. METHODS In vitro (liver microsomes stability and protein binding) and in vivo experiments (oral/intravenous dosing to mice) were carried out using darolutamide, S,S-darolutamide and S,Rdarolutamide. Besides, tissue levels of darolutamide, S,S-darolutamide and S,R-darolutamide were measured following oral and intravenous dosing. Appropriate plasma/tissue samples served to determine the pharmacokinetics of various analytes in mice. Liquid chromatography in tandem with mass spectrometry procedures enabled the delineation of the plasma pharmacokinetics, in vitro and tissue uptake data of the various analytes. RESULTS Chiral inversion was absent in the metabolic stability study. However, darolutamide showed profound stereoselectivity (S,S-darolutamide greater than S,R-darolutamide) after either intravenous or oral dosing. S,R-darolutamide but not S,S-darolutamide showed conversion to its antipode post oral and intravenous dosing to mice. Regardless of oral or intravenous dosing, active keto darolutamide formation was evident after administration of darolutamide, S,S-darolutamide or S,R- darolutamide. Tissue data supported the observations in plasma; however, tissue exposure of darolutamide, S,Sdarolutamide and S,R-darolutamide was much lower as compared to plasma. CONCLUSION In lieu of the human pharmacokinetic data, although the administration of diastereomeric darolutamide was justified, it is proposed to delineate the clinical pharmacokinetics of S,Rdarolutamide and S,S-darolutamide relative to darolutamide in future clinical pharmacology studies.
Collapse
Affiliation(s)
- Neeraj K Saini
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd., Industrial Suburb, Yeshwanthpur, Bangalore-560 022, India
| | - Bhavesh B Gabani
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd., Industrial Suburb, Yeshwanthpur, Bangalore-560 022, India
| | - Umesh Todmal
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd., Industrial Suburb, Yeshwanthpur, Bangalore-560 022, India
| | - Suresh P Sulochana
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd., Industrial Suburb, Yeshwanthpur, Bangalore-560 022, India
| | - Vinay Kiran
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd., Industrial Suburb, Yeshwanthpur, Bangalore-560 022, India
| | - Mohd Zainuddin
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd., Industrial Suburb, Yeshwanthpur, Bangalore-560 022, India
| | - Narayanan Balaji
- Analytical Department, Yeshwanthpur, Jubilant Biosys Ltd., Industrial Suburb, Yeshwanthpur, Bangalore-560 022, India
| | - Sai B Polina
- Chemistry Department, Jubilant Biosys Ltd., Industrial Suburb, Yeshwanthpur, Bangalore-560 022, India
| | | | - Ramesh Mullangi
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd., Industrial Suburb, Yeshwanthpur, Bangalore-560 022, India
| |
Collapse
|
6
|
Whole blood or plasma: what is the ideal matrix for pharmacokinetic-driven drug candidate selection? Future Med Chem 2020; 13:157-171. [PMID: 33275044 DOI: 10.4155/fmc-2020-0187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the present era of drug development, quantification of drug concentrations following pharmacokinetic studies has preferentially been performed using plasma as a matrix rather than whole blood. However, it is critical to realize the difference between measuring drug concentrations in blood versus plasma and the consequences thereof. Pharmacokinetics using plasma data may be misleading if concentrations differ between plasma and red blood cells (RBCs) because of differential binding in blood. In this review, factors modulating the partitioning of drugs into RBCs are discussed and the importance of determining RBC uptake of drugs for drug candidate selection is explored. In summary, the choice of matrix (plasma vs whole blood) is an important consideration to be factored in during drug discovery.
Collapse
|
7
|
|
8
|
Uhl GR. Dopamine compartmentalization, selective dopaminergic vulnerabilities in Parkinson's disease and therapeutic opportunities. Ann Clin Transl Neurol 2019; 6:406-415. [PMID: 30847375 PMCID: PMC6389739 DOI: 10.1002/acn3.707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/29/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
Progressive depletion of selected dopamine neurons is central to much Parkinson's disease (PD) disability. Although symptomatic treatments can ameliorate the disabilities that this neuronal depletion causes, no current strategy is documented to slow these losses. There is substantial evidence that dopamine in intracytoplasmic/extravesicular neuronal compartments can be toxic. Here, I review evidence that supports roles for dopamine compartmentalization, mediated largely by serial actions of plasma membrane SLC6A3/DAT and vesicular SLC18A2/VMAT2 transporters, in the selective patterns of dopamine neuronal loss found in PD brains. This compartmentalization hypothesis for the dopamine cell type specificity of PD lesions nominates available drugs for amelioration of damage arising from miscompartmentalized dopamine and raises cautions in using other drugs.
Collapse
Affiliation(s)
- George R. Uhl
- Neurology and Research ServicesNew Mexico VA HealthCare SystemAlbuquerqueNew Mexico87108
- Biomedical Research Institute of New MexicoAlbuquerqueNew Mexico87108
- Departments of Neurology, Neuroscience and Molecular Genetics and MicrobiologyUniversity of New MexicoAlbuquerqueNew Mexico87108
- Departments of Neurology, Neuroscience and Mental HealthJohns Hopkins Medical InstitutionsBaltimoreMaryland21287
| |
Collapse
|
9
|
Prediction of Drug-Drug Interactions with Bupropion and Its Metabolites as CYP2D6 Inhibitors Using a Physiologically-Based Pharmacokinetic Model. Pharmaceutics 2017; 10:pharmaceutics10010001. [PMID: 29267251 PMCID: PMC5874814 DOI: 10.3390/pharmaceutics10010001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/05/2017] [Accepted: 12/19/2017] [Indexed: 11/17/2022] Open
Abstract
The potential of inhibitory metabolites of perpetrator drugs to contribute to drug-drug interactions (DDIs) is uncommon and underestimated. However, the occurrence of unexpected DDI suggests the potential contribution of metabolites to the observed DDI. The aim of this study was to develop a physiologically-based pharmacokinetic (PBPK) model for bupropion and its three primary metabolites—hydroxybupropion, threohydrobupropion and erythrohydrobupropion—based on a mixed “bottom-up” and “top-down” approach and to contribute to the understanding of the involvement and impact of inhibitory metabolites for DDIs observed in the clinic. PK profiles from clinical researches of different dosages were used to verify the bupropion model. Reasonable PK profiles of bupropion and its metabolites were captured in the PBPK model. Confidence in the DDI prediction involving bupropion and co-administered CYP2D6 substrates could be maximized. The predicted maximum concentration (Cmax) area under the concentration-time curve (AUC) values and Cmax and AUC ratios were consistent with clinically observed data. The addition of the inhibitory metabolites into the PBPK model resulted in a more accurate prediction of DDIs (AUC and Cmax ratio) than that which only considered parent drug (bupropion) P450 inhibition. The simulation suggests that bupropion and its metabolites contribute to the DDI between bupropion and CYP2D6 substrates. The inhibitory potency from strong to weak is hydroxybupropion, threohydrobupropion, erythrohydrobupropion, and bupropion, respectively. The present bupropion PBPK model can be useful for predicting inhibition from bupropion in other clinical studies. This study highlights the need for caution and dosage adjustment when combining bupropion with medications metabolized by CYP2D6. It also demonstrates the feasibility of applying the PBPK approach to predict the DDI potential of drugs undergoing complex metabolism, especially in the DDI involving inhibitory metabolites.
Collapse
|
10
|
Srinivas NR. Letter: CYP2C19 polymorphisms and exacerbation of rabeprazole's effects on celecoxib-induced small bowel injury. Aliment Pharmacol Ther 2017; 46:706-707. [PMID: 28880446 DOI: 10.1111/apt.14240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- N R Srinivas
- Zydus Research Center, Ahmedabad, Gujarat, India
| |
Collapse
|