1
|
Noruzi M, Behmadi H, Khankahdani ZH, Sabzevari O, Foroumadi A, Ghahremani MH, Pourahmad J, Hassani S, Gholami M, Moghimi S, Ghazimoradi MM, Taghizadeh G, Sharifzadeh M. Alpha pyrrolidinovalerophenone (α-PVP) administration impairs spatial learning and memory in rats through brain mitochondrial dysfunction. Toxicol Appl Pharmacol 2023; 467:116497. [PMID: 37003365 DOI: 10.1016/j.taap.2023.116497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Novel psychoactive substances (NPS) consumption has increased in recent years, thus NPS-induced cognitive decline is a current source of concern. Alpha-pyrrolidinovalerophenone (α-PVP), as a member of NPS, is consumed throughout regions like Washington, D.C., Eastern Europe, and Central Asia. Mitochondrial dysfunction plays an essential role in NPS-induced cognitive impairment. Meanwhile, no investigations have been conducted regarding the α-PVP impact on spatial learning/memory and associated mechanisms. Consequently, our study investigated the α-PVP effect on spatial learning/memory and brain mitochondrial function. Wistar rats received different α-PVP doses (5, 10, and 20 mg/kg) intraperitoneally for 10 sequential days; 24 h after the last dose, spatial learning/memory was evaluated by the Morris Water Maze (MWM). Furthermore, brain mitochondrial protein yield and function variables (Mitochondrial swelling, succinate dehydrogenase (SDH) activity, lipid peroxidation, Mitochondrial Membrane Potential (MMP), Reactive oxygen species (ROS) level, brain ADP/ATP proportion, cytochrome c release, Mitochondrial Outer Membrane (MOM) damage) were examined. α-PVP higher dose (20 mg/kg) significantly impaired spatial learning/memory, mitochondrial protein yield, and brain mitochondrial function (caused reduced SDH activity, increased mitochondrial swelling, elevated ROS generation, increased lipid peroxidation, collapsed MMP, increased cytochrome c release, and brain ADP/ATP proportion, and MOM damage). Moreover, the lower dose of α-PVP (5 mg/kg) did not alter spatial learning/memory and brain mitochondrial function. These findings provide the first evidence regarding impaired spatial learning and memory following repeated administration of α-PVP and the possible role of brain mitochondrial dysfunction in these cognitive impairments.
Collapse
Affiliation(s)
- Marzieh Noruzi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Homayoon Behmadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Omid Sabzevari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, and Toxicology & Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy; Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Moghimi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ghorban Taghizadeh
- Rehabilitation Research Center, Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Yu H, Peng Y, Dong W, Shen B, Yang G, Nie Q, Tian Y, Qin L, Song C, Chen B, Zhao Y, Li L, Hong S. Nrf2 attenuates methamphetamine-induced myocardial injury by regulating oxidative stress and apoptosis in mice. Hum Exp Toxicol 2023; 42:9603271231219488. [PMID: 38031934 DOI: 10.1177/09603271231219488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
OBJECTIVES Methamphetamine (MA) abuse is a serious social problem worldwide. Cardiovascular complications were the second leading cause of death among MA abusers. We aimed to clarify the effects of MA on myocardial injury, oxidative stress, and apoptosis in myocardial cells and to explore the potential mechanism of nuclear factor-erythroid factor 2-related factor 2 (Nrf2) in MA-induced oxidative stress and apoptosis. METHODS An acute cardiac toxicity model of MA was established by intraperitoneal injection of MA (2 mg/kg) for 5 days. Nrf2 activation (by sulforaphane (SFN) 1 h before MA injection) and Nrf2 gene knockout were performed to explore the regulatory effects of Nrf2 on cardiac toxicity. RESULTS The protein expressions of Nrf2 (p < .001) and heme oxygenase-1 (HO-1) were increased (p < .01), suggesting that MA activated the Nrf2/HO-1 pathway. In the MA group, cardiac injury score (p < .001) and cardiac troponin I (cTnI) protein expression increased (p < .01). Malondialdehyde (MDA) content increased (p < .001), superoxide dismutase (SOD) activity decreased (p < .05). Protein expressions of Caspase-3 (p < .001) and Bax (p < .001) increased, and Bcl-2 decreased (p < .001) as well. These changes were reversed by activation of Nrf2 but became more pronounced after Nrf2 knockout, suggested that the activation and knockout of Nrf2 attenuated and aggravated MA-induced myocardial injury, oxidative stress and apoptosis in myocardial cells, respectively. CONCLUSIONS MA administration induced myocardial injury, oxidative stress, and apoptosis in mice. Nrf2 attenuated MA-induced myocardial injury by regulating oxidative stress and apoptosis, thus playing a protective role.
Collapse
Affiliation(s)
- Hao Yu
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
- West China Hospital, Sichuan University, Chengdu, China
| | - Yanxia Peng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Wenjuan Dong
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Baoyu Shen
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Qianyun Nie
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yan Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Lixiang Qin
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chunhui Song
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Bingzheng Chen
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yongna Zhao
- Key Laboratory of Natural Medicine Pharmacology of Yunnan Province, Kunming Medical University, Kunming, China
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Shijun Hong
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Radaelli D, Manfredi A, Zanon M, Fattorini P, Scopetti M, Neri M, Frisoni P, D’Errico S. Synthetic Cannabinoids and Cathinones Cardiotoxicity: Facts and Perspectives. Curr Neuropharmacol 2021; 19:2038-2048. [PMID: 33845747 PMCID: PMC9185792 DOI: 10.2174/1570159x19666210412101929] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/06/2021] [Accepted: 03/18/2021] [Indexed: 11/23/2022] Open
Abstract
New psychoactive substances (NPS) constitute a group of psychotropic substances, designed to mimic the effects of traditional substances like cannabis, cocaine, MDMA, khat, which was not regulated by the 1961 United Nations Convention on Narcotics or the 1971 United Nations Convention on Psychotropic Substances. Illegal laboratories responsible for their production regularly developed new substances and placed them on the market to replace the ones that have been banned; for this reason, during the last decade this class of substances has represented a great challenge for the public health and forensic toxicologists. The spectrum of side effects caused by the intake of these drugs of abuse is very wide since they act on different systems with various mechanisms of action. To date most studies have focused on the neurotoxic effects, very few works focus on cardiotoxicity. Specifically, both synthetic cannabinoids and synthetic cathinones appear to be involved in different cardiac events, including myocardial infarction and sudden cardiac death due to fatal arrhythmias. Synthetic cannabinoids and cathinones cardiotoxicity are mainly mediated through activation of the CB1 receptor present on cardiomyocyte and involved with reactive oxygen species production, ATP depletion and cell death. Concerns with the adrenergic over-stimulation induced by this class of substances and increasing oxidative stress are mainly reported. In this systematic review we aim to summarize the data from all the works analyzing the possible mechanisms through which synthetic cannabinoids and synthetic cathinones damage the myocardial tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stefano D’Errico
- Address correspondence to this author at the Department of Medicine, Surgery and Health, University of Trieste, Italy; E-mail:
| |
Collapse
|
4
|
Pavlek LR, Dillard J, Rogers LK. The role of oxidative stress in toxicities due to drugs of abuse. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Troya J, Martínez de Gándara A, Ryan P, Cuevas G, Pardo V. Mephedrone and chemsex: when it stops being a party and becomes a fatal problem. Int J STD AIDS 2019; 30:1028-1030. [DOI: 10.1177/0956462419857004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemsex is the use of psychoactive substances, mainly gamma-hydroxybutyrate, 4-methylmethcathinone (mephedrone), and methamphetamines to facilitate and enhance the experience of sexual intercourse. The toxicity of these drugs may be problematic and lead to a fatal outcome in some patients. We present the case of a 26-year-old man living with human immunodeficiency virus whose frequent use of mephedrone caused his death.
Collapse
Affiliation(s)
- Jesús Troya
- Internal Medicine, Hospital Universitario Infanta Leonor, Madrid, Spain
| | | | - Pablo Ryan
- Internal Medicine, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Guillermo Cuevas
- Internal Medicine, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Virginia Pardo
- Internal Medicine, Hospital Universitario Infanta Leonor, Madrid, Spain
| |
Collapse
|
6
|
Zangeneh F, Vazirizadeh A, Mirshamsi MR, Fakhri A, Faizi M, Pourahmad J. Induction of Apoptosis by an Extract of Persian Gulf Marine Mollusc, Turbo Coronatus through the Production of Reactive
Oxygen Species in Mouse Melanoma Cells. Asian Pac J Cancer Prev 2018; 19:3479-3488. [PMID: 30583673 PMCID: PMC6428523 DOI: 10.31557/apjcp.2018.19.12.3479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective: A variety of approaches such as surgery, chemotherapy, radiotherapy, hormonal therapy and
immunotherapy are used to treat melanomas, but unfortunately in most case, the response is very weak and often side
effects are serious. This study concerns selective toxicity of an extract of Turbo coronatus on cells and mitochondria from
a syngeneic mouse model of melanoma. Methods: Cells and mitochondria isolated from extra tumoral and melanoma
tissues were exposed toa T. coronatus crude extract and fractions obtained by gel-filtration chromatography and assayed
for mitochondrial and cellular parameters. Result: Crude extract (375, 750 and 1,500 μg/ml) and fraction 1; F1; (275,
550 and 1100 μg/ml) of T. coronatus extract induced a significant (p<0.05) increase of the reactive oxygen species
(ROS) level, swelling of mitochondria, collapse of mitochondrial membrane potential (MMP), release of cytochrome
c and caspase-3 activation only in the mitochondria and cells obtained from melanoma but not extra tumoral tissues. In
addition, the F1 fraction decreased the percentage of viable cells and induced apoptosis in melanoma cells. Conclusion:
For the first time we could demonstrate that the F1 fraction of a T. coronatus extract, selectively induces ROS mediated
cytotoxicity by directly targeting mitochondria in melanoma tissues and it may be a suitable candidate for novel drug
treatment of malignant melanomas.
Collapse
Affiliation(s)
- Fatemeh Zangeneh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Research Center Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,
| | | | | | | | | | | |
Collapse
|