1
|
He D, Liao F, Wang P, Gan B, Yu L. Rapid separation and identification of 96 main constituents in Huanglian Jiedu decoction via ultra-high performance liquid chromatography-Orbitrap Fusion Tribrid mass spectrometer. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4888. [PMID: 36241360 DOI: 10.1002/jms.4888] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Huanglian Jiedu decoction is a widely used traditional Chinese medicine with a broad spectrum of therapeutic effects, including heat clearing, detoxification, and attenuation of inflammation. However, the composition of Huanglian Jiedu decoction is still unclear due to its complexity and limitations of analytical methods. In this study, we established a fast and reliable analytical method based on ultra-performance LC-Orbitrap Fusion Tribrid mass spectrometer for high-speed separation and structural identification of multiple compounds in Huanglian Jiedu decoction. The analysis was carried out using a Hypersil GOLD C18 column (2.1 × 100 mm, 1.9 μm) with gradient elution coupled to a high-definition mass spectrometer system operating in both positive and negative ESI modes. According to the chromatographic retention time, precise molecular weight, fragment ion peaks, and published data, the main chromatographic peaks were attributed to specific molecules whose chemical structures were determined. In total, 96 components were identified, including 34 flavonoids and their glycosides, 23 alkaloids, 18 organic acids, 13 terpenoids, and 8 miscellaneous compounds. This study revealed the detailed chemical composition of Huanglian Jiedu decoction, which is of great importance for quality control and further pharmacological and mechanistic studies.
Collapse
Affiliation(s)
- Dongmei He
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Fengyun Liao
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Wang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bing Gan
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lingling Yu
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Guo R, Zhao M, Liu H, Su R, Mao Q, Gong L, Cao X, Hao Y. Uncovering the pharmacological mechanisms of Xijiao Dihuang decoction combined with Yinqiao powder in treating influenza viral pneumonia by an integrative pharmacology strategy. Biomed Pharmacother 2021; 141:111676. [PMID: 34126353 DOI: 10.1016/j.biopha.2021.111676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Xijiao Dihuang decoction combined with Yinqiao powder (XDD-YQP) is a classical combination formula; however, its therapeutic effects in treating influenza viral pneumonia and the pharmacological mechanisms remain unclear. The therapeutic effect of XDD-YQP in influenza viral pneumonia was evaluated in mice. Subsequently, an everted gut sac model coupled with UPLC/Q-TOF MS were used to screen and identify the active compounds of XDD-YQP. Furthermore, network pharmacological analysis was adopted to probe the mechanisms of the active compounds. Lastly, we verified the targets predicted from network pharmacological analysis by differential bioinformatics analysis. Animal experiments showed that XDD-YQP has a therapeutic effect on influenza viral pneumonia. Moreover, 113 active compounds were identified from intestinal absorbed solutions of XDD-YQP. Using network pharmacological analysis, 90 major targets were selected as critical in the treatment of influenza viral pneumonia through 12 relevant pathways. Importantly, the MAPK signaling pathway was found to be closely associated with the other 11 pathways. Moreover, seven key targets, EGFR, FOS, MAPK1, MAP2K1, HRAS, NRAS, and RELA, which are common targets in the MAPK signaling pathway, were investigated. These seven key targets were identified as differentially expressed genes (DEGs) between influenza virus-infected and uninfected individuals. Hence, the seven key targets in the MAPK signaling pathway may play a vital role in the treatment of influenza viral pneumonia with XDD-YQP. This research may offer an integrative pharmacology strategy to clarify the pharmacological mechanisms of traditional Chinese medicines. The results provide a theoretical basis for a broader clinical application of XDD-YQP.
Collapse
Affiliation(s)
- Rui Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mengfan Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rina Su
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Mao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Leilei Gong
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xu Cao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Hao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
3
|
Yu X, Jiao Q, Jiang Y, Guo S, Zhang W, Liu B. Study on the Plasma Protein Binding Rate and Compatibility Regularity of the Constituents Migrating to Blood of Simiao Yong'an Decoction. Curr Drug Metab 2020; 21:979-993. [PMID: 32735517 DOI: 10.2174/1567201817666200731170731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/09/2020] [Accepted: 06/20/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To study the compatibility regularity of Simiao Yong'an decoction by determining the plasma protein binding rate with the constituents in Simiao Yong'an decoction and to preliminarily clarify the effects of the compatibility on the plasma protein binding rate of different components. METHODS Based on the equilibrium dialysis method, high-performance liquid chromatography was used to determine the contents of six constituents, which were divided into a single group and combination groups, in Simiao Yong'an decoction in the internal and external dialysis solutions. The obtained plasma protein binding rate through calculations was an index to evaluate the binding of the above components to plasma protein in different conditions. RESULTS Harpagide, harpagoside, sweroside and loganin showed low plasma protein binding rates, ferulic acid exhibited a moderate plasma protein binding rate, and glycyrrhizic acid showed a high plasma protein binding rate. The compatibility study showed that glycyrrhizic acid promoted the binding of ferulic acid to plasma protein. Glycyrrhizic acid and ferulic acid were the key compounds to promote the binding of harpagide to plasma protein. Glycyrrhizic acid, harpagide, harpagoside and loganin had a significant inhibitory effects on the binding of sweroside to plasma protein. The plasma protein binding capacities of harpagoside and loganin were reduced by the other five constituents. Glycyrrhizic acid had the strongest plasma protein binding effect, and the binding effect was not affected by other components. CONCLUSION This study explores the effects of compound compatibility on effective components from the perspective of plasma protein binding by high-performance liquid chromatography combined with the equilibrium dialysis method, and lays a foundation for clarifying the compatibility rule of Simiao Yong'an decoction and also provides a new idea for the study of the compatibility of traditional Chinese medicine formulas.
Collapse
Affiliation(s)
- Xiao Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qishu Jiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yanyan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Chang R, Liu J, Luo Y, Huang T, Li Q, Wen J, Chen W, Zhou T. Isoflavones' effects on pharmacokinetic profiles of main iridoids from Gardeniae Fructus in rats. J Pharm Anal 2019; 10:571-580. [PMID: 33425451 PMCID: PMC7775847 DOI: 10.1016/j.jpha.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
Gardeniae Fructus (GF) and Semen Sojae Praeparatum (SSP) are both medicine food homologies and widely used in Chinese clinical prescriptions together. The research investigated the pharmacokinetics of four iridoids in normal rats and isolfavones-fed rats, which were administered with isolfavones from SSP for 7, 14, 21 and 28 consecutive days. A validated LC-MS/MS method was developed for determining shanzhiside, genipin-1-gentiobioside, geniposide and their metabolite genipin in rat plasma. Plasma samples were pretreated by solid-phase extraction using paeoniflorin as the internal standard. The chromatographic separation was performed on a Waters Atlantis T3 (4.6 mm × 150 mm, 3 μm) column using a gradient mobile phase consisting of acetonitril and water (containing 0.06% acetic acid). The mass detection was under the multiple reaction monitoring (MRM) mode via polarity switching between negative and positive ionization modes. The calibration curves exhibited good linearity (r > 0.997) for all components. The lower limit of quantitation was in the range of 1–10 ng/mL. The intra-day and inter-day precisions (RSD) at three different levels were both less than 12.2% and the accuracies (RE) ranged from −10.1% to 16.4%. The extraction recovery of them ranged from 53.8% to 99.7%. Pharmacokinetic results indicated the bioavailability of three iridoid glycosides and the metabolite, genipin in normal rats was higher than that in rats exposed to isoflavones. With the longer time of administration of isoflavones, plasma concentrations of iridoids decreased, while genipin sulfate, the phase Ⅱ metabolite of genposide and genipin-1-gentiobioside, appeared the rising exposure. The pharmacokinetic profiles of main iridoids from GF were altered by isoflavones. A LC-MS/MS method for determination of four iridoids in rat plasma was developed and applied. The bioavailability of four iridoids decreased in rats with their increasing isoflavones exposure time. Isoflavones could alter the fate of iridoids in vivo when GF and SSP were prescribed together to obtain toxicity-reducing.
Collapse
Affiliation(s)
- Ruirui Chang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jialin Liu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yusha Luo
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | | | - Qiang Li
- Shimadzu China Co.LTD., Shanghai, 200233, China
| | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Tingting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|