1
|
Nagayoshi H, Murayama N, Kim V, Kim D, Takenaka S, Yamazaki H, Guengerich FP, Shimada T. Oxidation of Naringenin, Apigenin, and Genistein by Human Family 1 Cytochrome P450 Enzymes and Comparison of Interaction of Apigenin with Human P450 1B1.1 and Scutellaria P450 82D.1. Chem Res Toxicol 2023; 36:1778-1788. [PMID: 37783573 PMCID: PMC11497155 DOI: 10.1021/acs.chemrestox.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Naringenin, an initial synthesized flavanone in various plant species, is further utilized for production of many biologically active flavonoids, e.g., apigenin, eriodictyol, and genistein, by various plant enzymes including cytochrome P450s (P450s or CYPs). We examined how these flavonoids are oxidized by human P450 family 1 and 2A enzymes. Naringenin was principally oxidized at the 3'-position to form eriodictyol by CYP1 enzymes more efficiently than by CYP2A enzymes, and the resulting eriodictyol was further oxidized to two penta-hydroxylated products. In contrast to plant P450 enzymes, these human P450s did not mediate the desaturation of naringenin and eriodictyol to give apigenin and luteolin, respectively. Apigenin was oxidized at the C3' and C6 positions to form luteolin and scutellarein by these P450s. CYP1B1.1 and 1B1.3 had high activities in apigenin 6-hydroxylation with a homotropic cooperative manner, as has been observed previously in chrysin 6-hydroxylation (Nagayoshi et al., Chem. Res. Toxicol. 2019, 32, 1268-1280). Molecular docking analysis suggested that CYP1B1 had two apigenin binding sites and showed similarities in substrate recognition sites to plant CYP82D.1, one of the enzymes in catalyzing apigenin and chrysin 6-hydroxylations in Scutellaria baicalensis. The present results suggest that human CYP1 enzymes and CYP2A13 in some reactions have important roles in the oxidation of naringenin, eriodictyol, apigenin, and genistein and that human CYP1B1 and Scutellaria CYP82D.1 have similarities in their SRS regions, catalyzing 6-hydroxylation of both apigenin and chrysin.
Collapse
Affiliation(s)
- Haruna Nagayoshi
- Food Chemistry Section, Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka 537-0025, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Korea
| | - Shigeo Takenaka
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Metropolitan University, Habikino, Osaka 583-8555, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Tsutomu Shimada
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Metropolitan University, Habikino, Osaka 583-8555, Japan
| |
Collapse
|
2
|
Shimada T, Nagayoshi H, Murayama N, Sawai A, Kim V, Kim D, Yamazaki H, Guengerich FP, Takenaka S. Oxidation of 3'-methoxyflavone, 4'-methoxyflavone, and 3',4'-dimethoxyflavone and their derivatives having 5,7-dihydroxyl moieties by human cytochromes P450 1B1 and 2A13. Xenobiotica 2022; 52:134-145. [PMID: 35387543 PMCID: PMC9896170 DOI: 10.1080/00498254.2022.2062486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidation of 3'-methoxyflavone, 4'-methoxyflavone, and 3',4'-dimethoxyflavone and their derivatives containing 5,7-dihydroxyl groups by human cytochrome P450 (P450 or CYP) 1B1 and 2A13 was determined using LC-MS/MS systems.3'-Methoxyflavone and 4'-methoxyflavone were mainly O-demethylated to form 3'-hydroxyflavone and 4'-hydroxyflavone, respectively, and then 3',4'-dihydroxyflavone at higher rates with CYP1B1 than with CYP2A13. 4'-Methoxy-5,7-dihydroxyflavone (acacetin) was found to be demethylated by CYP1B1 and 2A13 to form 4',5,7-trihydroxyflavone (apigenin) at rates of 0.098-1 and 0.42 min-1, respectively. 3'-Methoxy-5,7-dihydroxyflavone was also demethylated by both P450s, with CYP2A13 being more active.3',4'-Dimethoxyflavone was a good substrate for CYP1B1 but not for CYP2A13 and was found to be mainly O-demethylated to form 3',4'-dihydroxyflavone (at a rate of 4.2 min-1) and also several ring-oxygenated products having m/z 299 fragments. Molecular docking analysis supported the proper orientation for formation of these products by CYP1B1.Our present results showed that 3'- and 4'-methoxyflavone can be oxidised to their O-demethylated products and, to a lesser extent, to ring oxidation products by both P450s 1B1 and 2A13 and that 3',4'-dimethoxyflavone is a good substrate for CYP1B1 in forming both O-demethylated and ring-oxidation products. Introduction of a 57diOHF moiety into these methoxylated flavonoids caused decreased in oxidation by CYP1B1 and 2A13.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Haruna Nagayoshi
- Laboratory of Food Sanitation, Osaka Institute of Public Health, Osaka, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Atsuki Sawai
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Shigeo Takenaka
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| |
Collapse
|
3
|
Fessner ND, Grimm C, Srdič M, Weber H, Kroutil W, Schwaneberg U, Glieder A. Natural Product Diversification by One‐Step Biocatalysis using Human P450 3A4. ChemCatChem 2021. [DOI: 10.1002/cctc.202101564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nico D. Fessner
- Institute of Molecular Biotechnology NAWI Graz Graz University of Technology Petersgasse 14 8010 Graz Austria
| | - Christopher Grimm
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Matic Srdič
- SeSaM-Biotech GmbH Forckenbeckstraße 50 52074 Aachen Germany
- Bisy GmbH Wuenschendorf 292 Hofstätten an der Raab 8200 Hofstaetten Austria
| | - Hansjörg Weber
- Institute of Organic Chemistry NAWI Graz Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Ulrich Schwaneberg
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Anton Glieder
- Institute of Molecular Biotechnology NAWI Graz Graz University of Technology Petersgasse 14 8010 Graz Austria
| |
Collapse
|
4
|
Nagayoshi H, Murayama N, Takenaka S, Kim V, Kim D, Komori M, Yamazaki H, Guengerich FP, Shimada T. Roles of cytochrome P450 2A6 in the oxidation of flavone, 4'-hydroxyflavone, and 4'-, 3'-, and 2'-methoxyflavones by human liver microsomes. Xenobiotica 2021; 51:995-1009. [PMID: 34224301 DOI: 10.1080/00498254.2021.1950866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nine forms of recombinant cytochrome P450 (P450 or CYP) enzymes were used to study roles of individual P450 enzymes in the oxidation of flavone and some other flavonoids, 4'-hydroxyflavone and 4'-, 3'-, and 2'-methoxyflavones, by human liver microsomes using LC-MS/MS analysis.As has been reported previously , 4'-, 3'-, and 2'-methoxyflavones were preferentially O-demethylated by human liver P450 enzymes to form 4'-, 3'-, and 2'-hydroxylated flavones and also 3',4'-dihydroxyflavone from the former two substrates.In comparisons of product formation by oxidation of these methoxylated flavones, CYP2A6 was found to be a major enzyme catalysing flavone 4'- and 3'-hydroxylations by human liver microsomes but did not play significant roles in 2'-hydroxylation of flavone, O-demethylations of three methoxylated flavones, and the oxidation of 4'-hydroxyflavone to 3',4'-dihydroxyflavone.The effects of anti-CYP2A6 IgG and chemical P450 inhibitors suggested that different P450 enzymes, as well as CYP2A6, catalysed oxidation of these flavonoids at different positions by liver microsomes.These studies suggest that CYP2A6 catalyses flavone 4'- and 3'-hydroxylations in human liver microsomes and that other P450 enzymes have different roles in oxidizing these flavonoids.
Collapse
Affiliation(s)
- Haruna Nagayoshi
- Laboratory of Food Sanitation, Osaka Institute of Public Health, Osaka, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tsutomu Shimada
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan.,Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| |
Collapse
|
5
|
Shimada T, Nagayoshi H, Murayama N, Takenaka S, Katahira J, Kim V, Kim D, Komori M, Yamazaki H, Guengerich FP. Liquid chromatography-tandem mass spectrometry analysis of oxidation of 2'-, 3'-, 4'- and 6-hydroxyflavanones by human cytochrome P450 enzymes. Xenobiotica 2021; 51:139-154. [PMID: 33047997 PMCID: PMC7875482 DOI: 10.1080/00498254.2020.1836433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
2'-Hydroxyflavanone (2'OHFva), 3'OHFva, 4'OHFva, and 6OHFva, the major oxidative products of flavanone by human cytochrome P450 (P450, CYP) enzymes, were studied in regard to further oxidation by human CYP1A1, 1A2, 1B1.1, 1B1.3, and 2A6. The products formed were analyzed with LC-MS/MS and characterized by their positive ion fragmentations on mass spectrometry. Several di-hydroxylated flavanone (diOHFva) and di-hydroxylated flavone (diOHFvo) products, detected by analyzing parent ions at m/z 257 and 255, respectively, were found following incubation of these four hydroxylated flavanones with P450s. The m/z 257 products were produced at higher levels than the latter with four substrates examined. The structures of the m/z 257 products were characterized by LC-MS/MS product ion spectra, and the results suggest that 3'OHFva and 4'OHFva are further oxidized mainly at B-ring by P450s while 6OHFva oxidation was at A-ring. Different diOHFvo products (m/z 255) were also characterized by LC-MS/MS, and the results suggested that most of these diOHFvo products were formed through oxidation or desaturation of the diOHFva products (m/z 257) by P450s. Only when 4'OHFva (m/z 241) was used as a substrate, formation of 4'OHFvo (m/z 239) was detected, indicating that diOHFvo might also be formed through oxidation of 4'OHFvo by P450s. Finally, our results indicated that CYP1 family enzymes were more active than CYP2A6 in catalyzing the oxidation of these four hydroxylated flavanones, and these findings were supported by molecular docking studies of these chemicals with active sites of P450 enzymes.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Haruna Nagayoshi
- Division of Food Sanitation, Osaka Institute of Public Health, Osaka, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Jun Katahira
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
6
|
The subgroup of 2'-hydroxy-flavonoids: Molecular diversity, mechanism of action, and anticancer properties. Bioorg Med Chem 2021; 32:116001. [PMID: 33444847 DOI: 10.1016/j.bmc.2021.116001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022]
Abstract
Flavonoids are abundant in nature, structurally very diversified and largely investigated. However, the subgroup of 2'-hydroxyflavonoids is much less known and not frequently studied. The present review identifies the major naturally-occurring and synthetic 2'-hydroxyflavonoid derivatives and discusses their structural characteristics and biological properties, with a focus on anticancer activities. The pharmacological properties of 2'-hydroxyflavone (2'-HF) and 2'-hydroxyflavanone (2'-HFa) are detailed. Upon binding to the Ral-interacting protein Rlip implicated in the transport of glutathione conjugates, 2'-HFa inhibits tumor cell proliferation and restrict tumor growth, in particular in breast cancer models. Among the synthetic derivatives, the characteristics of the anticancer product 2D08 (2',3',4'-trihydroxy flavone) are detailed to shed light on the molecular mechanism of action of this compound, as a regulator of protein SUMOylation. Inhibition of protein SUMOylation by 2D08 blocks cancer cell migration and invasion, and the compound greatly enhances the anticancer effects of conventional cytotoxic drugs like etoposide. The structural role of the 2'-hydroxyl group on the phenyl C-ring of the flavonoid is discussed, notably the capacity to engage intramolecular H-bonding interactions with the O1 atom on the B-ring of the chromone unit (or the oxygen of a 3-OH group when it is presents). The 2'-hydroxyl group of flavonoid appears as a regulator of the conformational freedom between the bicyclic A-B unit and the appended phenyl C-ring, favoring the planarity of the molecule. It is an essential group accounting for the biological properties of 2'-HF, 2'-HFa and structurally related compounds. This review shed light on 2'-hydroxyflavonoids to encourage their use and chemical development.
Collapse
|
7
|
Nagayoshi H, Murayama N, Tsujino M, Takenaka S, Katahira J, Kim V, Kim D, Komori M, Yamazaki H, Guengerich FP, Shimada T. Preference for O-demethylation reactions in the oxidation of 2'-, 3'-, and 4'-methoxyflavones by human cytochrome P450 enzymes. Xenobiotica 2020; 50:1158-1169. [PMID: 32312164 DOI: 10.1080/00498254.2020.1759157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
2'-, 3'-, and 4'-Methoxyflavones (MeFs) were incubated with nine forms of recombinant human cytochrome P450 (P450 or CYP) enzymes in the presence of an NADPH-generating system and the products formed were analyzed with LC-MS/MS methods.CYP1B1.1 and 1B1.3 were highly active in demethylating 4'MeF to form 4'-hydroxyflavone (rate of 5.0 nmol/min/nmol P450) and further to 3',4'-dihydroxyflavone (rates of 2.1 and 0.66 nmol/min/nmol P450, respectively). 3'MeF was found to be oxidized by P450s to m/z 239 (M-14) products (presumably 3'-hydroxyflavone) and then to 3',4'-dihydroxyflavone. P450s also catalyzed oxidation of 2'MeF to m/z 239 (M-14) and m/z 255 (M-14, M-14 + 16) products, presumably mono- and di-hydroxylated products, respectively.At least two types of ring oxidation products having m/z 269 fragments were formed, although at slower rates than the formation of mono- and di-hydroxylated products, on incubation of these MeFs with P450s; one type was products oxidized at the C-ring, having m/z 121 fragments, and the other one was the products oxidized at the A-ring (having m/z 137 fragments).Molecular docking analysis indicated the preference of interaction of O-methoxy moiety of methoxyflavones in the active site of CYP1A2.These results suggest that 2'-, 3'-, and 4'-methoxyflavones are principally demethylated by human P450s to form mono- and di-hydroxyflavones and that direct oxidation occurs in these MeFs to form mono-hydroxylated products, oxidized at the A- or B-ring of MeF.
Collapse
Affiliation(s)
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | | | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Jun Katahira
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea, and
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea, and
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| |
Collapse
|
8
|
Yin J, Ma Y, Liang C, Wang H, Sun Y, Zhang L, Jia Q. A Complete Study of Farrerol Metabolites Produced in Vivo and in Vitro. Molecules 2019; 24:E3470. [PMID: 31554336 PMCID: PMC6804004 DOI: 10.3390/molecules24193470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 01/01/2023] Open
Abstract
Although farrerol, a characteristically bioactive constituent of Rhododendron dauricum L., exhibits extensive biological and pharmacological activities (e.g., anti-oxidant, anti-immunogenic, and anti-angiogenic) as well as a high drug development potential, its metabolism remains underexplored. Herein, we employed ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry coupled with multiple data post-processing techniques to rapidly identify farrerol metabolites produced in vivo (in rat blood, bile, urine and feces) and in vitro (in rat liver microsomes). As a result, 42 in vivo metabolites and 15 in vitro metabolites were detected, and farrerol shown to mainly undergo oxidation, reduction, (de)methylation, glucose conjugation, glucuronide conjugation, sulfate conjugation, N-acetylation and N-acetylcysteine conjugation. Thus, this work elaborates the metabolic pathways of farrerol and reveals the potential pharmacodynamics forms of farrerol.
Collapse
Affiliation(s)
- Jintuo Yin
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| | - Yinling Ma
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei Province General Center, Shijiazhuang 050051, China.
| | - Caijuan Liang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| | - Hairong Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| | - Yupeng Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| | - Lantong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| | - Qingzhong Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
9
|
Uehara S, Murayama N, Yamazaki H, Suemizu H. Regioselective hydroxylation of an antiarrhythmic drug, propafenone, mediated by rat liver cytochrome P450 2D2 differs from that catalyzed by human P450 2D6. Xenobiotica 2019; 49:1323-1331. [PMID: 30596462 DOI: 10.1080/00498254.2018.1564401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
1. Propafenone, an antiarrhythmic drug, is a typical human cytochrome P450 (P450) 2D6 substrate used in preclinical studies. Here, propafenone oxidation by mammalian liver microsomes was investigated in vitro. 2. Liver microsomes from humans and marmosets preferentially mediated propafenone 5-hydroxylation, minipig, rat and mouse livers primarily mediated 4'-hydroxylation, but cynomolgus monkey and dog liver microsomes differently mediated N-despropylation. 3. Quinine, ketoconazole or anti-P450 2D antibodies suppressed propafenone 4'/5-hydroxylation in human and rat liver microsomes. Pretreatments with β-naphthoflavone or dexamethasone increased N-despropylation in rat livers. 4. Recombinant rat P450 2D2 efficiently catalysed propafenone 4'-hydroxylation in a substrate inhibition manner, comparable to rat liver microsomes, while human P450 2D6 displayed propafenone 5-hydroxylation. Human and rat P450 1A, 2C and 3A enzymes mediated propafenone N-despropylation with high capacities. 5. Carbon-4' of propafenone docked favourably into the active site of P450 2D2 based on an in silico model; in contrast, carbon-5 of propafenone docked into human P450 2D6. 6. These results suggest that the major roles of individual P450 2D enzymes in regioselective hydroxylations of propafenone differ between human and rat livers, while the minor roles of P450 1A, 2C and 3A enzymes for propafenone N-despropylation are similar in livers of both species.
Collapse
Affiliation(s)
- Shotaro Uehara
- a Central Institute for Experimental Animals , Kawasaki , Japan
| | - Norie Murayama
- b Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Machida , Japan
| | - Hiroshi Yamazaki
- b Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Machida , Japan
| | - Hiroshi Suemizu
- a Central Institute for Experimental Animals , Kawasaki , Japan
| |
Collapse
|
10
|
Nagayoshi H, Murayama N, Kakimoto K, Tsujino M, Takenaka S, Katahira J, Lim YR, Kim D, Yamazaki H, Komori M, Guengerich FP, Shimada T. Oxidation of Flavone, 5-Hydroxyflavone, and 5,7-Dihydroxyflavone to Mono-, Di-, and Tri-Hydroxyflavones by Human Cytochrome P450 Enzymes. Chem Res Toxicol 2019; 32:1268-1280. [PMID: 30964977 DOI: 10.1021/acs.chemrestox.9b00078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biologically active plant flavonoids, including 5,7-dihydroxyflavone (57diOHF, chrysin), 4',5,7-trihydroxyflavone (4'57triOHF, apigenin), and 5,6,7-trihydroxyflavone (567triOHF, baicalein), have important pharmacological and toxicological significance, e.g., antiallergic, anti-inflammatory, antioxidative, antimicrobial, and antitumorgenic properties. In order to better understand the metabolism of these flavonoids in humans, we examined the oxidation of flavone, 5-hydroxyflavone (5OHF), and 57diOHF to various products by human cytochrome P450 (P450 or CYP) and liver microsomal enzymes. Individual human P450s and liver microsomes oxidized flavone to 6-hydroxyflavone, small amounts of 5OHF, and 11 other monohydroxylated products at different rates and also produced several dihydroxylated products (including 57diOHF and 7,8-dihydroxyflavone) from flavone. We also found that 5OHF was oxidized by several P450 enzymes and human liver microsomes to 57diOHF and further to 567triOHF, but the turnover rates in these reactions were low. Interestingly, both CYP1B1.1 and 1B1.3 converted 57diOHF to 567triOHF at turnover rates (on the basis of P450 contents) of >3.0 min-1, and CYP1A1 and 1A2 produced 567triOHF at rates of 0.51 and 0.72 min-1, respectively. CYP2A13 and 2A6 catalyzed the oxidation of 57diOHF to 4'57triOHF at rates of 0.7 and 0.1 min-1, respectively. Our present results show that different P450s have individual roles in oxidizing these phytochemical flavonoids and that these reactions may cause changes in their biological and toxicological properties in mammals.
Collapse
Affiliation(s)
- Haruna Nagayoshi
- Osaka Institute of Public Health , 1-3-69 Nakamichi , Higashinari-ku , Osaka 537-0025 , Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| | - Kensaku Kakimoto
- Osaka Institute of Public Health , 1-3-69 Nakamichi , Higashinari-ku , Osaka 537-0025 , Japan
| | - Masaki Tsujino
- Osaka Institute of Public Health , 1-3-69 Nakamichi , Higashinari-ku , Osaka 537-0025 , Japan
| | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation , Osaka Prefecture University , 3-7-30 , Habikino , Osaka 583-8555 , Japan
| | - Jun Katahira
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences , Osaka Prefecture University , 1-58 Rinku-Orai-Kita , Izumisano , Osaka 598-8531 , Japan
| | - Young-Ran Lim
- Department of Biological Sciences , Konkuk University , Seoul 05029 , Korea
| | - Donghak Kim
- Department of Biological Sciences , Konkuk University , Seoul 05029 , Korea
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences , Osaka Prefecture University , 1-58 Rinku-Orai-Kita , Izumisano , Osaka 598-8531 , Japan
| | - F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States
| | - Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences , Osaka Prefecture University , 1-58 Rinku-Orai-Kita , Izumisano , Osaka 598-8531 , Japan
| |
Collapse
|