1
|
Zhu X, Kong W, Wang Z, Liu X, Liu L. Prediction of SPT-07A Pharmacokinetics in Rats, Dogs, and Humans Using a Physiologically-Based Pharmacokinetic Model and In Vitro Data. Pharmaceutics 2024; 16:1596. [PMID: 39771574 PMCID: PMC11676658 DOI: 10.3390/pharmaceutics16121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/30/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: SPT-07A, a D-borneol, is currently being developed in China for the treatment of ischemic stroke. We aimed to create a whole-body physiologically-based pharmacokinetic (PBPK) model to predict the pharmacokinetics of SPT-07A in rats, dogs, and humans. Methods: The in vitro metabolism of SPT-07A was studied using hepatic, renal, and intestinal microsomes. The pharmacokinetics of SPT-07A in rats were simulated using the developed PBPK model and in vitro data. Following validation using pharmacokinetic data in rats, the developed PBPK model was scaled up to dogs and humans. Results: Data from hepatic microsomes revealed that SPT-07A was primarily metabolized by UDP-glucuronosyltransferase (UGTs). Glucuronidation of SPT-07A also occurred in the kidney and intestine. The in vitro to in vivo extrapolation analysis showed that hepatic clearance of SPT-07A in rats, dogs, and humans accounted for 62.2%, 87.3%, and 76.5% of the total clearance, respectively. The renal clearance of SPT-07A in rats, dogs, and humans accounted for 32.6%, 12.7%, and 23.1% of the total clearance, respectively. Almost all of the observed concentrations of SPT-07A following single or multi-dose to rats, dogs, and humans were within the 5th-95th percentiles of simulations from 100 virtual subjects. Sensitivity analysis showed that hepatic metabolic velocity, renal metabolic velocity, and hepatic blood flow remarkably affected the exposure to SPT-07A in humans. Dedrick plots were also used to predict the pharmacokinetics of SPT-07A in humans. Prediction accuracy using the PBPK model is superior to that of Dedrick plots. Conclusions: We elucidate UGT-mediated SPT-07A metabolism in the liver, kidney, and intestine of rats, dogs, and humans. The pharmacokinetics of SPT-07A were successfully simulated using the developed PBPK model.
Collapse
Affiliation(s)
- Xiaoqiang Zhu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (X.Z.); (Z.W.)
| | - Weimin Kong
- School of Pharmacy, Bengbu Medical University, Bengbu 233030, China;
| | - Zehua Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (X.Z.); (Z.W.)
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (X.Z.); (Z.W.)
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (X.Z.); (Z.W.)
| |
Collapse
|
2
|
Bhattiprolu AK, Kollipara S, Boddu R, Arumugam A, Khan SM, Ahmed T. A Semi-Mechanistic Physiologically Based Biopharmaceutics Model to Describe Complex and Saturable Absorption of Metformin: Justification of Dissolution Specifications for Extended Release Formulation. AAPS PharmSciTech 2024; 25:193. [PMID: 39168956 DOI: 10.1208/s12249-024-02904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Physiologically based pharmacokinetic (PBPK) or physiologically based biopharmaceutics models (PBBM) demonstrated plethora of applications in both new drugs and generic product development. Justification of dissolution specifications and establishment of dissolution safe space is an important application of such modeling approaches. In case of molecules exhibiting saturable absorption behavior, justification of dissolution specifications requires development of a model that incorporates effects of transporters is critical to simulate in vivo scenario. In the present case, we have developed a semi-mechanistic PBBM to describe the non-linearity of BCS class III molecule metformin for justification of dissolution specifications of extended release formulation at strengths 500 mg and 1000 mg. Semi-mechanistic PBBM was built using physicochemical properties, dissolution and non-linearity was accounted through incorporation of multiple transporter kinetics at absorption level. The model was extensively validated using literature reported intravenous, oral (immediate & extended release) formulations and further validated using in-house bioequivalence data in fasting and fed conditions. Virtual dissolution profiles at lower and upper specifications were generated to justify the dissolution specifications. The model predicted literature as well as in-house clinical study data with acceptable prediction errors. Further, virtual bioequivalence trials predicted the bioequivalence outcome that matched with clinical study data. The model predicted bioequivalence when lower and upper specifications were compared against pivotal test formulations thereby justifying dissolution specifications. Overall, complex and saturable absorption pathway of metformin was successfully simulated and this work resulted in regulatory acceptance of dissolution specifications which has ability to reduce multiple dissolution testing.
Collapse
Affiliation(s)
- Adithya Karthik Bhattiprolu
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), BachupallyMedchal Malkajgiri District, Hyderabad, Telangana, 500 090, India
| | - Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), BachupallyMedchal Malkajgiri District, Hyderabad, Telangana, 500 090, India
| | - Rajkumar Boddu
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), BachupallyMedchal Malkajgiri District, Hyderabad, Telangana, 500 090, India
| | - Anand Arumugam
- Clinical Pharmacokinetics, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), BachupallyMedchal Malkajgiri District, Hyderabad, Telangana, 500 090, India
| | - Sohel Mohammed Khan
- Clinical Pharmacokinetics, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), BachupallyMedchal Malkajgiri District, Hyderabad, Telangana, 500 090, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), BachupallyMedchal Malkajgiri District, Hyderabad, Telangana, 500 090, India.
- Clinical Pharmacokinetics, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), BachupallyMedchal Malkajgiri District, Hyderabad, Telangana, 500 090, India.
| |
Collapse
|
3
|
Kollipara S, Chougule M, Boddu R, Bhatia A, Ahmed T. Playing Hide-and-Seek with Tyrosine Kinase Inhibitors: Can We Overcome Administration Challenges? AAPS J 2024; 26:66. [PMID: 38862853 DOI: 10.1208/s12248-024-00939-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have demonstrated significant efficacy against various types of cancers through molecular targeting mechanisms. Over the past 22 years, more than 100 TKIs have been approved for the treatment of various types of cancer indicating the significant progress achieved in this research area. Despite having significant efficacy and ability to target multiple pathways, TKIs administration is associated with challenges. There are reported inconsistencies between observed food effect and labeling administration, challenges of concomitant administration with acid-reducing agents (ARA), pill burden and dosing frequency. In this context, the objective of present review is to visit administration challenges of TKIs and effective ways to tackle them. We have gathered data of 94 TKIs approved in between 2000 and 2022 with respect to food effect, ARA impact, administration schemes (food and PPI restrictions), number of pills per day and administration frequency. Further, trend analysis has been performed to identify inconsistencies in the labeling with respect to observed food effect, molecules exhibiting ARA impact, in order to identify solutions to remove these restrictions through novel formulation approaches. Additionally, opportunities to reduce number of pills per day and dosing frequency for better patient compliance were suggested using innovative formulation interventions. Finally, utility of physiologically based pharmacokinetic modeling (PBPK) for rationale formulation development was discussed with literature reported examples. Overall, this review can act as a ready-to-use-guide for the formulation, biopharmaceutics scientists and medical oncologists to identify opportunities for innovation for TKIs.
Collapse
Affiliation(s)
- Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Mahendra Chougule
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Rajkumar Boddu
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Ashima Bhatia
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India.
| |
Collapse
|
4
|
Boddu R, Kollipara S, Bhattiprolu AK, Ahmed T. Novel application of PBBM to justify impact of faster dissolution on safety and pharmacokinetics - a case study and utility in regulatory justifications. Xenobiotica 2023; 53:587-602. [PMID: 38062540 DOI: 10.1080/00498254.2023.2289160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/26/2023] [Indexed: 12/20/2023]
Abstract
Physiologically based biopharmaceutics modelling (PBBM) was recognised as potential approach for biopharmaceutics applications. However, PBBM to justify safety is an unexplored area.In this manuscript, we elucidated PBBM application for safety justification. Product DRL is a generic extended release tablet containing an anti-epileptic narrow therapeutic index (NTI) drug. During dossier review, regulatory agency requested to evaluate the impact of faster dissolution profiles observed during stability on safety aspects. In order to justify, PBBMbased strategy was adapted.Model was validated and population simulations were performed for reference and test formulations and the predictions matched with clinical outcome. The model was found to be sensitive to dissolution changes and hence applied for the prediction of stability batches exhibiting faster dissolution profiles, virtually generated profiles at lower and upper specifications. The maximum predicted plasma levels were well below the reported safety levels, thereby demonstrating safety of the product.Overall, a novel application of PBBM to justify safety was demonstrated. Similar justifications using PBBM and linking with safety can be adopted where safety can be impacted due to aggravated dissolution profiles. Such justifications have potential to avoid clinical safety studies and helps in faster approval of drug product.
Collapse
Affiliation(s)
- Rajkumar Boddu
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Integrated Product Development Organization (IPDO), Hyderabad, India
| | - Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Integrated Product Development Organization (IPDO), Hyderabad, India
| | - Adithya Karthik Bhattiprolu
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Integrated Product Development Organization (IPDO), Hyderabad, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Integrated Product Development Organization (IPDO), Hyderabad, India
| |
Collapse
|