1
|
Zimmerman AE, Graham EB, McDermott J, Hofmockel KS. Estimating the Importance of Viral Contributions to Soil Carbon Dynamics. GLOBAL CHANGE BIOLOGY 2024; 30:e17524. [PMID: 39450620 DOI: 10.1111/gcb.17524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024]
Abstract
Biogeochemical models for predicting carbon dynamics increasingly include microbial processes, reflecting the importance of microorganisms in regulating the movement of carbon between soils and the atmosphere. Soil viruses can redirect carbon among various chemical pools, indicating a need for quantification and development soil carbon models that explicitly represent viral dynamics. In this opinion, we derive a global estimate of carbon potentially released from microbial biomass by viral infections in soils and synthesize a quantitative soil carbon budget from existing literature that explicitly includes viral impacts. We then adapt known mechanisms by which viruses influence carbon cycles in marine ecosystems into a soil-explicit framework. Finally, we explore the diversity of virus-host interactions during infection and conceptualize how infection mode may impact soil carbon fate. Our synthesis highlights key knowledge gaps hindering the incorporation of viruses into soil carbon cycling research and generates specific hypotheses to test in the pursuit of better quantifying microbial dynamics that explain ecosystem-scale carbon fluxes. The importance of identifying critical drivers behind soil carbon dynamics, including these elusive but likely pervasive viral mechanisms of carbon redistribution, becomes more pressing with climate change.
Collapse
Affiliation(s)
- Amy E Zimmerman
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
| | - Emily B Graham
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Jason McDermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
2
|
Trade-offs of lipid remodeling in a marine predator-prey interaction in response to phosphorus limitation. Proc Natl Acad Sci U S A 2022; 119:e2203057119. [PMID: 36037375 PMCID: PMC9457565 DOI: 10.1073/pnas.2203057119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial growth is often limited by key nutrients like phosphorus (P) across the global ocean. A major response to P limitation is the replacement of membrane phospholipids with non-P lipids to reduce their cellular P quota. However, the biological “costs” of lipid remodeling are largely unknown. Here, we uncover a predator–prey interaction trade-off whereby a lipid-remodeled bacterial prey cell becomes more susceptible to digestion by a protozoan predator facilitating its rapid growth. Thus, we highlight a complex interplay between adaptation to the abiotic environment and consequences for biotic interactions (grazing), which may have important implications for the stability and structuring of microbial communities and the performance of the marine food web. Phosphorus (P) is a key nutrient limiting bacterial growth and primary production in the oceans. Unsurprisingly, marine microbes have evolved sophisticated strategies to adapt to P limitation, one of which involves the remodeling of membrane lipids by replacing phospholipids with non-P-containing surrogate lipids. This strategy is adopted by both cosmopolitan marine phytoplankton and heterotrophic bacteria and serves to reduce the cellular P quota. However, little, if anything, is known of the biological consequences of lipid remodeling. Here, using the marine bacterium Phaeobacter sp. MED193 and the ciliate Uronema marinum as a model, we sought to assess the effect of remodeling on bacteria–protist interactions. We discovered an important trade-off between either escape from ingestion or resistance to digestion. Thus, Phaeobacter grown under P-replete conditions was readily ingested by Uronema, but not easily digested, supporting only limited predator growth. In contrast, following membrane lipid remodeling in response to P depletion, Phaeobacter was less likely to be captured by Uronema, thanks to the reduced expression of mannosylated glycoconjugates. However, once ingested, membrane-remodeled cells were unable to prevent phagosome acidification, became more susceptible to digestion, and, as such, allowed rapid growth of the ciliate predator. This trade-off between adapting to a P-limited environment and susceptibility to protist grazing suggests the more efficient removal of low-P prey that potentially has important implications for the functioning of the marine microbial food web in terms of trophic energy transfer and nutrient export efficiency.
Collapse
|
3
|
Perliński P, Mudryk ZJ, Zdanowicz M, Kubera Ł. Abundance of Live and Dead Bacteriopsammon Inhabiting Sandy Ecosystems of Recreational Marine Beaches of the Southern Baltic Sea. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02079-5. [PMID: 35876854 DOI: 10.1007/s00248-022-02079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The study was carried out on four non-tidal sandy marine beaches located on the Polish part of the southern Baltic Sea coast. We applied a LIVE/DEAD™ BacLight™ Bacterial Viability Kit (Invitrogen™) method to determine the abundance of live and dead bacteriopsammon. Live psammon bacteria cells constituted 31-53% of the total number of bacteria inhabiting sand of the studied beaches. Abundance of live and dead psammon bacteria generally differed along the horizontal profile in all beaches. The maximum density of bacteria was noted in the dune and the middle part of the beach (dry zones) and the minimum in wet zones, i.e., under seawater surface and at the swash zone. Generally along the vertical profile, the highest numbers of two studied bacterial groups were noted in the surface sand layer, while with increasing sediment depth their numbers significantly decreased. The abundance of live and dead bacteria showed a distinct seasonal variation.
Collapse
Affiliation(s)
- Piotr Perliński
- Department of Experimental Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22B str, 76-200, Słupsk, Poland.
| | - Zbigniew Jan Mudryk
- Department of Experimental Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22B str, 76-200, Słupsk, Poland
| | - Marta Zdanowicz
- Department of Experimental Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22B str, 76-200, Słupsk, Poland
| | - Łukasz Kubera
- Department of Microbiology and Immunobiology, Faculty of Biological Sciences, Kazimierz Wielki University, Al. Powstańców Wielkopolskich 10, 85-090, Bydgoszcz, Poland
| |
Collapse
|
4
|
Xie L, Zhang R, Luo YW. Assessment of Explicit Representation of Dynamic Viral Processes in Regional Marine Ecological Models. Viruses 2022; 14:v14071448. [PMID: 35891428 PMCID: PMC9324674 DOI: 10.3390/v14071448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 01/27/2023] Open
Abstract
Viruses, the most abundant microorganisms in the ocean, play important roles in marine ecosystems, mainly by killing their hosts and contributing to nutrient recycling. However, in models simulating ecosystems in real marine environments, the virus-mediated mortality (VMM) rates of their hosts are implicitly represented by constant parameters, thus ignoring the dynamics caused by interactions between viruses and hosts. Here, we construct a model explicitly representing marine viruses and the VMM rates of major hosts, heterotrophic bacteria, and apply it to two sites in the oligotrophic North Pacific and the more productive Arabian Sea. The impacts of the viral processes were assessed by comparing model results with the viral processes enabled and disabled. For reliable assessments, a data assimilation method was used to objectively optimize the model parameters in each run. The model generated spatiotemporally variable VMM rates, generally decreasing in the subsurface but increasing at the surface. Although the dynamics introduced by viruses could be partly stabilized by the ecosystems, they still caused substantial changes to the bacterial abundance, primary production and carbon export, with the changes greater at the more productive site. Our modeling experiments reveal the importance of explicitly simulating dynamic viral processes in marine ecological models.
Collapse
|
5
|
Enhanced Viral Activity in the Surface Microlayer of the Arctic and Antarctic Oceans. Microorganisms 2021; 9:microorganisms9020317. [PMID: 33557117 PMCID: PMC7913828 DOI: 10.3390/microorganisms9020317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/26/2022] Open
Abstract
The ocean surface microlayer (SML), with physicochemical characteristics different from those of subsurface waters (SSW), results in dense and active viral and microbial communities that may favor virus–host interactions. Conversely, wind speed and/or UV radiation could adversely affect virus infection. Furthermore, in polar regions, organic and inorganic nutrient inputs from melting ice may increase microbial activity in the SML. Since the role of viruses in the microbial food web of the SML is poorly understood in polar oceans, we aimed to study the impact of viruses on prokaryotic communities in the SML and in the SSW in Arctic and Antarctic waters. We hypothesized that a higher viral activity in the SML than in the SSW in both polar systems would be observed. We measured viral and prokaryote abundances, virus-mediated mortality on prokaryotes, heterotrophic and phototrophic nanoflagellate abundance, and environmental factors. In both polar zones, we found small differences in environmental factors between the SML and the SSW. In contrast, despite the adverse effect of wind, viral and prokaryote abundances and virus-mediated mortality on prokaryotes were higher in the SML than in the SSW. As a consequence, the higher carbon flux released by lysed cells in the SML than in the SSW would increase the pool of dissolved organic carbon (DOC) and be rapidly used by other prokaryotes to grow (the viral shunt). Thus, our results suggest that viral activity greatly contributes to the functioning of the microbial food web in the SML, which could influence the biogeochemical cycles of the water column.
Collapse
|
6
|
Nguyen M, Wemheuer B, Laffy PW, Webster NS, Thomas T. Taxonomic, functional and expression analysis of viral communities associated with marine sponges. PeerJ 2021; 9:e10715. [PMID: 33604175 PMCID: PMC7863781 DOI: 10.7717/peerj.10715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses play an essential role in shaping the structure and function of ecological communities. Marine sponges have the capacity to filter large volumes of ‘virus-laden’ seawater through their bodies and host dense communities of microbial symbionts, which are likely accessible to viral infection. However, despite the potential of sponges and their symbionts to act as viral reservoirs, little is known about the sponge-associated virome. Here we address this knowledge gap by analysing metagenomic and (meta-) transcriptomic datasets from several sponge species to determine what viruses are present and elucidate their predicted and expressed functionality. Sponges were found to carry diverse, abundant and active bacteriophages as well as eukaryotic viruses belonging to the Megavirales and Phycodnaviridae. These viruses contain and express auxiliary metabolic genes (AMGs) for photosynthesis and vitamin synthesis as well as for the production of antimicrobials and the defence against toxins. These viral AMGs can therefore contribute to the metabolic capacities of their hosts and also potentially enhance the survival of infected cells. This suggest that viruses may play a key role in regulating the abundance and activities of members of the sponge holobiont.
Collapse
Affiliation(s)
- Mary Nguyen
- Centre for Marine Science and Innovation & School of Biological & Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Bernd Wemheuer
- Centre for Marine Science and Innovation & School of Biological & Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Patrick W Laffy
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia.,Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological & Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
7
|
Goto S, Tada Y, Suzuki K, Yamashita Y. Evaluation of the Production of Dissolved Organic Matter by Three Marine Bacterial Strains. Front Microbiol 2020; 11:584419. [PMID: 33178167 PMCID: PMC7593260 DOI: 10.3389/fmicb.2020.584419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022] Open
Abstract
A large part of marine dissolved organic matter (DOM) is considered to be recalcitrant DOM (RDOM) produced by marine bacteria. However, it is still unclear whether differences in bacterial species and/or physiology control the efficiency of RDOM production. Here, batch culture experiments with glucose as the sole carbon source were carried out using three model marine bacterial strains, namely, Alteromonas macleodii (Alt), Vibrio splendidus (Vib), and Phaeobacter gallaeciensis (Pha). Dissolved organic carbon (DOC) concentrations drastically decreased during the exponential growth phases of these bacteria due to the consumption of glucose. The efficiency of bacterial DOC production at the end of incubation was largely different among the strains and was higher for Vib (20%) than for the other two strains (Alt, 4%; Pha, 6%). All strains produced fluorescent DOM (FDOM), including humic-like FDOM which is considered as recalcitrant component in the ocean, even though the composition of bacterial FDOM was also different among the strains. The efficiency of humic-like FDOM production during the exponential growth phase was different among the bacterial strains; that is, Pha produced humic-like FDOM efficiently compared with the other two species. The efficiency of humic-like FDOM production with mineralization of organic matter was lower during the exponential growth phase than during the stationary phase of Alt and Pha. Four processes for the production of bacterially derived recalcitrant humic-like FDOM are suggested from this study: (1) production during active growing (in all strains), (2) production with the reutilization of bacterial DOM (Alt), (3) production with the consumption of cellular materials (Pha), and (4) release from lysis (Vib). Our results suggest that bacterial species and physiology can regulate RDOM production and accumulation in the ocean.
Collapse
Affiliation(s)
- Shuji Goto
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Yuya Tada
- National Institute for Minamata Disease, Minamata, Japan
| | - Koji Suzuki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan.,Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Youhei Yamashita
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan.,Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Fuchsman CA, Carlson MCG, Garcia Prieto D, Hays MD, Rocap G. Cyanophage host-derived genes reflect contrasting selective pressures with depth in the oxic and anoxic water column of the Eastern Tropical North Pacific. Environ Microbiol 2020; 23:2782-2800. [PMID: 32869473 DOI: 10.1111/1462-2920.15219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/14/2020] [Accepted: 08/27/2020] [Indexed: 01/19/2023]
Abstract
Cyanophages encode host-derived genes that may increase their fitness. We examined the relative abundance of 18 host-derived cyanophages genes in metagenomes and viromes along depth profiles from the Eastern Tropical North Pacific Oxygen Deficient Zone (ETNP ODZ) where Prochlorococcus dominates a secondary chlorophyll maximum within the ODZ. Cyanophages at the oxic primary chlorophyll maximum encoded genes related to light and phosphate stress (psbA, psbD and pstS in T4-like and psbA in T7-like), but the proportion of cyanophage with these genes decreased with depth. The proportion of cyanophage with purine biosynthesis genes increased with depth in T4-like, but not T7-like cyanophages. No additional host-derived genes were found in deep T7-like cyanophages, suggesting that T4-like and T7-like cyanophages have different host-derived gene acquisition strategies, possibly linked to their different genome packaging mechanisms. In contrast to the ETNP, in the oxic North Atlantic T4-like cyanophages encoded psbA and pstS throughout the euphotic zone. Differences in pstS between the ETNP and the North Atlantic stations were consistent with differences in phosphate concentrations in those regimes. We suggest that the low proportion of cyanophage with psbA within the ODZ reflects the stably stratified low-light conditions occupied by their hosts, a Prochlorococcus ecotype endemic to ODZs.
Collapse
Affiliation(s)
- Clara A Fuchsman
- School of Oceanography, University of Washington, Seattle, WA, USA.,Horn Point Laboratory, University of Maryland Center of Environmental Science, Cambridge, MD, 21613, USA
| | - Michael C G Carlson
- School of Oceanography, University of Washington, Seattle, WA, USA.,Technion-Israel Institute of Technology, Haifa, Israel
| | - David Garcia Prieto
- School of Oceanography, University of Washington, Seattle, WA, USA.,Horn Point Laboratory, University of Maryland Center of Environmental Science, Cambridge, MD, 21613, USA
| | - Matthew D Hays
- Horn Point Laboratory, University of Maryland Center of Environmental Science, Cambridge, MD, 21613, USA
| | - Gabrielle Rocap
- School of Oceanography, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Uppal G, Hu W, Vural DC. Evolution of chemotactic hitchhiking. J Evol Biol 2020; 33:1593-1605. [PMID: 32929788 DOI: 10.1111/jeb.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 11/29/2022]
Abstract
Bacteria typically reside in heterogeneous environments with various chemogradients where motile cells can gain an advantage over nonmotile cells. Since motility is energetically costly, cells must optimize their swimming speed and behaviour to maximize their fitness. Here, we investigate how cheating strategies might evolve where slow or nonmotile microbes exploit faster ones by sticking together and hitching a ride. Starting with physical and biological first principles, we computationally study the effects of sticking on the evolution of motility in a controlled chemostat environment. We find that stickiness allows for slow cheaters to dominate when chemoattractants are dispersed at intermediate distances. In this case, slow microbes exploit faster ones until they consume the population, leading to a tragedy of commons. For long races, slow microbes do gain an initial advantage from sticking, but eventually fall behind. Here, fast microbes are more likely to stick to other fast microbes and co-operate to increase their own population. We therefore conclude that whether the nature of the hitchhiking interaction is parasitic or mutualistic, depends on the chemoattractant distribution.
Collapse
Affiliation(s)
| | - Weiyi Hu
- Mathematics, Sichuan University, Chengdu, China
| | | |
Collapse
|
10
|
Roy K, Ghosh D, DeBruyn JM, Dasgupta T, Wommack KE, Liang X, Wagner RE, Radosevich M. Temporal Dynamics of Soil Virus and Bacterial Populations in Agricultural and Early Plant Successional Soils. Front Microbiol 2020; 11:1494. [PMID: 32733413 PMCID: PMC7358527 DOI: 10.3389/fmicb.2020.01494] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
As reported in many aquatic environments, recent studies in terrestrial ecosystems implicate a role for viruses in shaping the structure, function, and evolution of prokaryotic soil communities. However, given the heterogeneity of soil and the physical constraints (i.e., pore-scale hydrology and solid-phase adsorption of phage and host cells) on the mobility of viruses and bacteria, phage-host interactions likely differ from those in aquatic systems. In this study, temporal changes in the population dynamics of viruses and bacteria in soils under different land management practices were examined. The results showed that bacterial abundance was significantly and positively correlated to both virus and inducible prophage abundance. Bacterial and viral abundance were also correlated with soil organic carbon and nitrogen content as well as with C:N ratio. The seasonal variability in viral abundance increased with soil organic carbon content. The prokaryotic community structure was influenced more by land use than by seasonal variation though considerable variation was evident in the early plant successional and grassland sites. The free extracellular viral communities were also separated by land use, and the forest soil viral assemblage exhibiting the most seasonal variability was more distinct from the other sites. Viral assemblages from the agricultural soils exhibited the least seasonal variability. Similar patterns were observed for inducible prophage viral assemblages. Seasonal variability of viral assemblages was greater in mitomycin-C (mitC) induced prophages than in extracellular viruses irrespective of land use and management. Taken together, the data suggest that soil viral production and decay are likely balanced but there was clear evidence that the structure of viral assemblages is influenced by land use and by season.
Collapse
Affiliation(s)
- Krishnakali Roy
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Dhritiman Ghosh
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - K Eric Wommack
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
| | - Xiaolong Liang
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Regan E Wagner
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
11
|
Thingstad TF, Våge S. Host-virus-predator coexistence in a grey-box model with dynamic optimization of host fitness. THE ISME JOURNAL 2019; 13:3102-3111. [PMID: 31527663 PMCID: PMC6864060 DOI: 10.1038/s41396-019-0496-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 08/01/2019] [Accepted: 08/15/2019] [Indexed: 11/09/2022]
Abstract
Lytic viruses are believed to affect both flow patterns and host diversity in microbial food webs. Models resolving host and virus communities into subgroups can represent both aspects. However, when flow pattern is the prime interest, such models may seem unnecessary complex. This has led to proposals of black-box models using only total community sizes as state variables. This simplification creates a coexistence problem, however, since predator and virus communities then compete for the same, shared, prey = host community. Mathematically, this problem can be solved by introducing feedbacks allowing community-level properties to adapt. The different mathematical alternatives for such feedback represent different ecological assumptions and thus different hypotheses for how the balance between predators and viruses is controlled in nature. We here explore a model where the feedback works through an increase in host community resistance in response to high virus abundances, thereby reducing virus production. We use a dynamic "strategy" index S to describe the balance between defensive and competitive abilities in the host community, and assume the rate of change in S to be proportional to the local slope of the per capita fitness gradient for the host. We explore how such a "grey-box" model can allow stable coexistence of viruses and predators, and how equilibrium food web structure, virus-to-host ratio, and partitioning of host production varies; both as functions of host community traits, and as functions of external bottom-up and top-down drivers.
Collapse
Affiliation(s)
| | - Selina Våge
- Department of Biological Sciences, University of Bergen, 5020, Bergen, Norway
| |
Collapse
|
12
|
Våge S, Bratbak G, Egge J, Heldal M, Larsen A, Norland S, Lund Paulsen M, Pree B, Sandaa RA, Skjoldal EF, Tsagaraki TM, Øvreås L, Thingstad TF. Simple models combining competition, defence and resource availability have broad implications in pelagic microbial food webs. Ecol Lett 2018; 21:1440-1452. [PMID: 30014593 DOI: 10.1111/ele.13122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/11/2018] [Accepted: 06/13/2018] [Indexed: 01/07/2023]
Abstract
In food webs, interactions between competition and defence control the partitioning of limiting resources. As a result, simple models of these interactions contain links between biogeochemistry, diversity, food web structure and ecosystem function. Working at hierarchical levels, these mechanisms also produce self-similarity and therefore suggest how complexity can be generated from repeated application of simple underlying principles. Reviewing theoretical and experimental literature relevant to the marine photic zone, we argue that there is a wide spectrum of phenomena, including single cell activity of prokaryotes, microbial biodiversity at different levels of resolution, ecosystem functioning, regional biogeochemical features and evolution at different timescales; that all can be understood as variations over a common principle, summarised in what has been termed the 'Killing-the-Winner' (KtW) motif. Considering food webs as assemblages of such motifs may thus allow for a more integrated approach to aquatic microbial ecology.
Collapse
Affiliation(s)
- Selina Våge
- Marine Microbiology Research Group, Department of Biological Sciences, University of Bergen, PO box 7803, 5020, Bergen, Norway
| | - Gunnar Bratbak
- Marine Microbiology Research Group, Department of Biological Sciences, University of Bergen, PO box 7803, 5020, Bergen, Norway
| | - Jorun Egge
- Marine Microbiology Research Group, Department of Biological Sciences, University of Bergen, PO box 7803, 5020, Bergen, Norway
| | - Mikal Heldal
- Marine Microbiology Research Group, Department of Biological Sciences, University of Bergen, PO box 7803, 5020, Bergen, Norway
| | - Aud Larsen
- UNI Research Environment, Nygårdsgaten, 112, 5008, Bergen, Norway
| | - Svein Norland
- Marine Microbiology Research Group, Department of Biological Sciences, University of Bergen, PO box 7803, 5020, Bergen, Norway
| | - Maria Lund Paulsen
- Marine Microbiology Research Group, Department of Biological Sciences, University of Bergen, PO box 7803, 5020, Bergen, Norway
| | - Bernadette Pree
- Marine Microbiology Research Group, Department of Biological Sciences, University of Bergen, PO box 7803, 5020, Bergen, Norway
| | - Ruth-Anne Sandaa
- Marine Microbiology Research Group, Department of Biological Sciences, University of Bergen, PO box 7803, 5020, Bergen, Norway
| | - Evy Foss Skjoldal
- Marine Microbiology Research Group, Department of Biological Sciences, University of Bergen, PO box 7803, 5020, Bergen, Norway
| | - Tatiana M Tsagaraki
- Marine Microbiology Research Group, Department of Biological Sciences, University of Bergen, PO box 7803, 5020, Bergen, Norway
| | - Lise Øvreås
- Marine Microbiology Research Group, Department of Biological Sciences, University of Bergen, PO box 7803, 5020, Bergen, Norway
| | - T Frede Thingstad
- Marine Microbiology Research Group, Department of Biological Sciences, University of Bergen, PO box 7803, 5020, Bergen, Norway
| |
Collapse
|
13
|
Wei W, Zhang R, Peng L, Liang Y, Jiao N. Effects of temperature and photosynthetically active radiation on virioplankton decay in the western Pacific Ocean. Sci Rep 2018; 8:1525. [PMID: 29367730 PMCID: PMC5784127 DOI: 10.1038/s41598-018-19678-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/08/2018] [Indexed: 12/04/2022] Open
Abstract
In this study, we investigated virioplankton decay rates and their responses to changes in temperature and photosynthetically active radiation (PAR) in the western Pacific Ocean. The mean decay rates for total, high-fluorescence, and low-fluorescence viruses were 1.64 ± 0.21, 2.46 ± 0.43, and 1.57 ± 0.26% h−1, respectively. Higher temperatures and PAR increased viral decay rates, and the increases in the decay rates of low-fluorescence viruses were greater than those of high-fluorescence viruses. Our results revealed that low-fluorescence viruses are more sensitive to warming and increasing PAR than are high-fluorescence viruses, which may be related to differences in their biological characteristics, such as the density of packaged nucleic acid materials. Our study provided experimental evidence for the responses of natural viral communities to changes in global environmental factors (e.g., temperature and solar radiation).
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, PR China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, PR China.
| | - Lulu Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, PR China
| | - Yantao Liang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, PR China.,Research Center for Marine Biology and Carbon Sequestration, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and BioProcess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
14
|
Sauret C, Böttjer D, Talarmin A, Guigue C, Conan P, Pujo-Pay M, Ghiglione JF. Top-Down Control of Diesel-Degrading Prokaryotic Communities. MICROBIAL ECOLOGY 2015; 70:445-458. [PMID: 25805213 DOI: 10.1007/s00248-015-0596-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/08/2015] [Indexed: 06/04/2023]
Abstract
Biostimulation through the addition of inorganic nutrients has been the most widely practiced bioremediation strategy in oil-polluted marine waters. However, little attention has so far been paid to the microbial food web and the impact of top-down control that directly or indirectly influences the success of the bioremediation. We designed a mesocosm experiment using pre-filtered (<50 μm) surface seawater from the Bay of Banyuls-sur-Mer (North-Western Mediterranean Sea) and examined the top-down effect exerted by heterotrophic nanoflagellates (HNF) and virus-like particles (VLP) on prokaryotic abundance, activity and diversity in the presence or absence of diesel fuel. Prokaryotes, HNF and VLP abundances showed a predator-prey succession, with a co-development of HNF and VLP. In the polluted system, we observed a stronger impact of viral lysis on prokaryotic abundances than in the control. Analysis of the diversity revealed that a bloom of Vibrio sp. occurred in the polluted mesocosm. That bloom was rapidly followed by a less abundant and more even community of predation-resistant bacteria, including known hydrocarbon degraders such as Oleispira spp. and Methylophaga spp. and opportunistic bacteria such as Percisivirga spp., Roseobacter spp. and Phaeobacter spp. The shift in prokaryotic dominance in response to viral lysis provided clear evidence of the 'killing the winner' model. Nevertheless, despite clear effects on prokaryotic abundance, activity and diversity, the diesel degradation was not impacted by top-down control. The present study investigates for the first time the functioning of a complex microbial network (including VLP) using a nutrient-based biostimulation strategy and highlights some key processes useful for tailoring bioremediation.
Collapse
Affiliation(s)
- Caroline Sauret
- UPMC Univ Paris 06, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, 66650, Banyuls-sur-mer, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Seasonal abundance and diversity of culturable heterotrophic bacteria in relation to environmental factors in the Gulf of Antalya, Eastern Mediterranean, Turkey. World J Microbiol Biotechnol 2015; 31:569-82. [PMID: 25663240 DOI: 10.1007/s11274-015-1810-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/24/2015] [Indexed: 10/24/2022]
Abstract
The abundance of culturable heterotropic bacteria studied on and according to depth levels and seasons in the Gulf of Antalya. Environmental factors were compared regarding culturable heterotrophic bacteria abundance and diversities of bacteria. During the study period (between August 2009 and April 2010, seasonally in the Gulf of Antalya, at six stations and six depth levels (0-20 cm, 10, 25, 50, 100, 200 m). The bacterial isolates were identified in the automated micro identification system VITEK 2 Compact 30 (Biomereux, France). The mean abundance was higher in Sts. D, E and F than Sts. A, B and C, located in the eastern part of the gulf. The mean abundance decreased as the depth level increased. The mean abundance of CHB ranged between 8.15 × 10(6) and 2.54 × 10(8) CFU ml(-1) throughout the year. Abundance of CHB differed according to the variations of biotic and abiotic factors. A total of 27 taxa of bacteria including six bacterial classes were reported in this study as the first records for the Gulf of Antalya. Six bacterial classes: Gamma Proteobacteria (46.81 %), Bacilli (27.66 %), Beta Proteobacteria (12.77 %), Alfa Proteobacteria (6.38 %), Actinobacteria (4.26 %) and Flavobacteria (2.13 %) were determined. The study resulted in increased knowledge on the composition and biochemical response of bacteria isolated from eutrophic and oligotrophic areas. 23 bacteria species belonging to 16 families were reported.
Collapse
|
16
|
Ankrah NYD, May AL, Middleton JL, Jones DR, Hadden MK, Gooding JR, LeCleir GR, Wilhelm SW, Campagna SR, Buchan A. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME JOURNAL 2013; 8:1089-100. [PMID: 24304672 DOI: 10.1038/ismej.2013.216] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 10/27/2013] [Accepted: 10/31/2013] [Indexed: 11/09/2022]
Abstract
Viruses contribute to the mortality of marine microbes, consequentially altering biological species composition and system biogeochemistry. Although it is well established that host cells provide metabolic resources for virus replication, the extent to which infection reshapes host metabolism at a global level and the effect of this alteration on the cellular material released following viral lysis is less understood. To address this knowledge gap, the growth dynamics, metabolism and extracellular lysate of roseophage-infected Sulfitobacter sp. 2047 was studied using a variety of techniques, including liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics. Quantitative estimates of the total amount of carbon and nitrogen sequestered into particulate biomass indicate that phage infection redirects ∼75% of nutrients into virions. Intracellular concentrations for 82 metabolites were measured at seven time points over the infection cycle. By the end of this period, 71% of the detected metabolites were significantly elevated in infected populations, and stable isotope-based flux measurements showed that these cells had elevated metabolic activity. In contrast to simple hypothetical models that assume that extracellular compounds increase because of lysis, a profile of metabolites from infected cultures showed that >70% of the 56 quantified compounds had decreased concentrations in the lysate relative to uninfected controls, suggesting that these small, labile nutrients were being utilized by surviving cells. These results indicate that virus-infected cells are physiologically distinct from their uninfected counterparts, which has implications for microbial community ecology and biogeochemistry.
Collapse
Affiliation(s)
- Nana Yaw D Ankrah
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Amanda L May
- Department of Chemistry, University of TN, Knoxville, TN, USA
| | | | - Daniel R Jones
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Mary K Hadden
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | | - Gary R LeCleir
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
17
|
Eckert EM, Baumgartner M, Huber IM, Pernthaler J. Grazing resistant freshwater bacteria profit from chitin and cell-wall-derived organic carbon. Environ Microbiol 2013; 15:2019-30. [PMID: 23413977 DOI: 10.1111/1462-2920.12083] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/12/2012] [Accepted: 01/03/2013] [Indexed: 11/27/2022]
Abstract
The rise of grazing resistant planktonic bacteria in freshwater lakes during vernal phytoplankton blooms is favoured by predation of heterotrophic nanoflagellates (HNF). The spring period is also characterized by increased availability of organic carbon species that are in parts derived from cellular debris generated during bacterivory or viral lysis, such as peptidoglycan, chitin and their subunit N-acetylglucosamine (NAG). We tested the hypothesis that two dominant grazing resistant bacterial taxa, the ac1 tribe of Actinobacteria (ac1) and filamentous bacteria from the LD2 lineage (Saprospiraceae), profit from such carbon sources during periods of intense HNF predation. The abundances of ac1 and LD2 rose in parallel with HNF, and disproportionally high fractions of cells from both lineages were involved in NAG uptake. Members of ac1 and LD2 were significantly more enriched after NAG addition to lake water. However, highest growth rates of both bacterial lineages were found on chitin and peptidoglycan. Moreover, the direct or indirect transfer of organic carbon from peptidoglycan to LD2 filaments could be demonstrated. We thus provide evidence that these taxa may benefit twofold from protistan predation: by removal of their competitors, and by specific physiological adaptations to utilize carbon sources that are released during grazing or viral lysis.
Collapse
Affiliation(s)
- Ester M Eckert
- Limnological Station, Institute of Plant Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
| | | | | | | |
Collapse
|
18
|
Asplund ME, Rehnstam-Holm AS, Atnur V, Raghunath P, Saravanan V, Härnström K, Collin B, Karunasagar I, Godhe A. Water column dynamics of Vibrio in relation to phytoplankton community composition and environmental conditions in a tropical coastal area. Environ Microbiol 2011; 13:2738-51. [PMID: 21895909 DOI: 10.1111/j.1462-2920.2011.02545.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vibrio abundance generally displays seasonal patterns. In temperate coastal areas, temperature and salinity influence Vibrio growth, whereas in tropical areas this pattern is not obvious. The present study assessed the dynamics of Vibrio in the Arabian Sea, 1-2 km off Mangalore on the south-west coast of India, during temporally separated periods. The two sampling periods were signified by oligotrophic conditions, and stable temperatures and salinity. Vibrio abundance was estimated by culture-independent techniques in relation to phytoplankton community composition and environmental variables. The results showed that the Vibrio density during December 2007 was 10- to 100-fold higher compared with the February-March 2008 period. High Vibrio abundance in December coincided with a diatom-dominated phytoplankton assemblage. A partial least squares (PLS) regression model indicated that diatom biomass was the primary predictor variable. Low nutrient levels suggested high water column turnover rate, which bacteria compensated for by using organic molecules leaking from phytoplankton. The abundance of potential Vibrio predators was low during both sampling periods; therefore it is suggested that resource supply from primary producers is more important than top-down control by predators.
Collapse
Affiliation(s)
- Maria E Asplund
- Department of Marine Ecology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Organic carbon and mineral nutrient limitation of oxygen consumption, bacterial growth and efficiency in the Norwegian Sea. Polar Biol 2011. [DOI: 10.1007/s00300-010-0944-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Laidler JR, Stedman KM. Virus silicification under simulated hot spring conditions. ASTROBIOLOGY 2010; 10:569-576. [PMID: 20735248 DOI: 10.1089/ast.2010.0463] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Silicification of organisms in silica-depositing environments can impact both their ecology and their presence in the fossil record. Although microbes have been silicified under laboratory and environmental conditions, viruses have not. Bacteriophage T4 was successfully silicified under laboratory conditions that closely simulated those found in silica-depositing hot springs. Virus morphology was maintained, and a clear elemental signature of phosphorus was detected by energy-dispersive X-ray spectrophotometry (EDS).
Collapse
Affiliation(s)
- James R Laidler
- Biology Department and Center for Life in Extreme Environments, Portland State University, Portland, Oregon, USA
| | | |
Collapse
|
21
|
Abstract
Despite the impressive advances that have been made in assessing the diversity of marine microorganisms, the mechanisms that underlie the participation of microorganisms in marine food webs and biogeochemical cycles are poorly understood. Here, we stress the need to examine the biochemical interactions of microorganisms with ocean systems at the nanometre to millimetre scale--a scale that is relevant to microbial activities. The local impact of microorganisms on biogeochemical cycles must then be scaled up to make useful predictions of how marine ecosystems in the whole ocean might respond to global change. This approach to microbial oceanography is not only helpful, but is in fact indispensable.
Collapse
Affiliation(s)
- Farooq Azam
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
22
|
Holmfeldt K, Middelboe M, Nybroe O, Riemann L. Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their Flavobacterium hosts. Appl Environ Microbiol 2007; 73:6730-9. [PMID: 17766444 PMCID: PMC2074958 DOI: 10.1128/aem.01399-07] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phages are a main mortality factor for marine bacterioplankton and are thought to regulate bacterial community composition through host-specific infection and lysis. In the present study we demonstrate for a marine phage-host assemblage that interactions are complex and that specificity and efficiency of infection and lysis are highly variable among phages infectious to strains of the same bacterial species. Twenty-three Bacteroidetes strains and 46 phages from Swedish and Danish coastal waters were analyzed. Based on genotypic and phenotypic analyses, 21 of the isolates could be considered strains of Cellulophaga baltica (Flavobacteriaceae). Nevertheless, all bacterial strains showed unique phage susceptibility patterns and differed by up to 6 orders of magnitude in sensitivity to the same titer of phage. The isolated phages showed pronounced variations in genome size (8 to >242 kb) and host range (infecting 1 to 20 bacterial strains). Our data indicate that marine bacterioplankton are susceptible to multiple co-occurring phages and that sensitivity towards phage infection is strain specific and exists as a continuum between highly sensitive and resistant, implying an extremely complex web of phage-host interactions. Hence, effects of phages on bacterioplankton community composition and dynamics may go undetected in studies where strain identity is not resolvable, i.e., in studies based on the phylogenetic resolution provided by 16S rRNA gene or internal transcribed spacer sequences.
Collapse
Affiliation(s)
- Karin Holmfeldt
- Department of Natural Sciences, Kalmar University, S-391 82 Kalmar, Sweden
| | | | | | | |
Collapse
|
23
|
Konopka A, Carrero-Colon M, Nakatsu CH. Community dynamics and heterogeneities in mixed bacterial communities subjected to nutrient periodicities. Environ Microbiol 2007; 9:1584-90. [PMID: 17504495 DOI: 10.1111/j.1462-2920.2007.01326.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sixteen replicate microcosms were inoculated with a mixed assemblage of heterotrophic bacteria and provided with discrete pulses of protein as carbon and energy source. The dynamics of community structure were monitored by 16S rRNA gene polymerase chain reaction denaturant gradient gel electrophoresis (PCR-DGGE). The results were consistent with a strong role for biological interactions in maintaining diversity. Replicate microcosms developed different microbial communities. For systems exposed to nutrient pulses every 7 days, the number of DGGE bands averaged 13 +/- 4 (mean +/- SD) and the Dice similarity coefficient between pairs ranged from 0.08 to 0.67. In each of 16 systems provided protein once each day, there were dynamic changes over the first 30 days but community composition was stable over the next 20 days. However, most systems differed from each other; two-thirds of the pairwise comparisons had similarity coefficients in the range of 0.35-0.63. These 16 systems contained 10 +/- 2 phylotypes (mean +/- SD) and in aggregate 34 phylotypes were found in the 16 systems. Most phylotypes were found in < 25% of the systems, and there were not strong networks of association among phylotypes.
Collapse
Affiliation(s)
- Allan Konopka
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
24
|
Bouvier T, del Giorgio PA. Key role of selective viral-induced mortality in determining marine bacterial community composition. Environ Microbiol 2007; 9:287-97. [PMID: 17222128 DOI: 10.1111/j.1462-2920.2006.01137.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viral infection is thought to play an important role in shaping bacterial community composition and diversity in aquatic ecosystems, but the strength of this interaction and the mechanisms underlying this regulation are still not well understood. The consensus is that viruses may impact the dominant bacterial strains, but there is little information as to how viruses may affect the less abundant taxa, which often comprise the bulk of the total bacterial diversity. The potential effect of viruses on the phylogenetic composition of marine bacterioplankton was assessed by incubating marine bacteria collected along a North Pacific coastal-open ocean transect in seawater that was greatly depleted of ambient viruses. The ambient communities were dominated by typical marine groups, including alphaproteobacteria and the Bacteroidetes. Incubation of these communities in virus-depleted ambient water yielded an unexpected and dramatic increase in the relative abundance of bacterial groups that are generally undetectable in the in situ assemblages, such as betaproteobacteria and Actinobacteria. Our results suggest that host susceptibility is not necessarily only proportional to its density but to other characteristics of the host, that rare marine bacterial groups may be more susceptible to viral-induced mortality, and that these rare groups may actually be the winners of competition for resources. These observations are not inconsistent with the 'phage kills the winner' hypothesis but represent an extreme and yet undocumented case of this paradigm, where the potential winners apparently never actually develop beyond a very low abundance threshold in situ. We further suggest that this mode of regulation may influence not just the distribution of single strains but of entire phylogenetic groups.
Collapse
Affiliation(s)
- T Bouvier
- CNRS-UMR5119, Université de Montpellier II, case 093, Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
| | | |
Collapse
|
25
|
Fischer UR, Wieltschnig C, Kirschner AKT, Velimirov B. Contribution of virus-induced lysis and protozoan grazing to benthic bacterial mortality estimated simultaneously in microcosms. Environ Microbiol 2006; 8:1394-407. [PMID: 16872403 DOI: 10.1111/j.1462-2920.2006.01032.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In contrast to the water column, the fate of bacterial production in freshwater sediments is still a matter of debate. Thus, the importance of virus-induced lysis and protozoan grazing of bacteria was investigated for the first time simultaneously in a silty sediment layer of a mesotrophic oxbow lake. Microcosms were installed in the laboratory in order to study the dynamics of these processes over 15 days. All microbial and physicochemical parameters showed acceptable resemblance to field data observed during a concomitant in situ study, and similar conclusions can be drawn with respect to the quantitative impact of viruses and protozoa on the bacterial compartment. Viral decay rates ranged from undetectable to 0.078 h(-1) (average, 0.033 h(-1)), and the control of bacterial production from below the detection limit to 36% (average, 12%). The contribution of virus-induced lysis of bacteria to the dissolved organic matter pool as well as to benthic bacterial nutrition was low. Ingestion rates of protozoan grazers ranged from undetectable to 24.7 bacteria per heterotrophic nanoflagellate (HNF) per hour (average, 4.8 bacteria HNF(-1) h(-1)) and from undetectable to 73.3 bacteria per ciliate per hour (average, 11.2 bacteria ciliate(-1) h(-1)). Heterotrophic nanoflagellate and ciliates together cropped up to 5% (average, 1%) of bacterial production. The viral impact on bacteria prevailed over protozoan grazing by a factor of 2.5-19.9 (average, 9.5). In sum, these factors together removed up to 36% (average, 12%) of bacterial production. The high number of correlations between viral and protozoan parameters is discussed in view of a possible relationship between virus removal and the presence of protozoan grazers.
Collapse
Affiliation(s)
- Ulrike R Fischer
- Medical University of Vienna, Centre for Anatomy and Cell Biology, Research Group General Microbiology, Waehringer Strasse 10, 1090 Vienna, Austria.
| | | | | | | |
Collapse
|
26
|
Bongiorni L, Magagnini M, Armeni M, Noble R, Danovaro R. Viral production, decay rates, and life strategies along a trophic gradient in the North Adriatic Sea. Appl Environ Microbiol 2005; 71:6644-50. [PMID: 16269692 PMCID: PMC1287695 DOI: 10.1128/aem.71.11.6644-6650.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the relationships between trophic conditions and viral dynamics have been widely explored in different pelagic environments, there have been few attempts at independent estimates of both viral production and decay. In this study, we investigated factors controlling the balance between viral production and decay along a trophic gradient in the north Adriatic basin, providing independent estimates of these variables and determining the relative importance of nanoflagellate grazing and viral life strategies. Increasing trophic conditions induced an increase of bacterioplankton growth rates and of the burst sizes. As a result, eutrophic waters displayed highest rates of viral production, which considerably exceeded observed rates of viral decay (up to 2.9 x 10(9) VLP liter(-1) h(-1)). Viral decay was also higher in eutrophic waters, where it accounted for ca. 40% of viral production, and dropped significantly to 1.3 to 10.7% in oligotrophic waters. These results suggest that viral production and decay rates may not necessarily be balanced in the short term, resulting in a net increase of viruses in the system. In eutrophic waters nanoflagellate grazing, dissolved-colloidal substances, and lysogenic infection were responsible together for the removal of ca. 66% of viral production versus 17% in oligotrophic waters. Our results suggest that different causative agents are primarily responsible for the removal of viruses from the water column in different trophic conditions. Factors other than those considered in the past might shed light on processes responsible for the removal and/or decay of viral particles from the water column.
Collapse
Affiliation(s)
- Lucia Bongiorni
- Department of Marine Science, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | | | | | | |
Collapse
|
27
|
Simu K, Holmfeldt K, Zweifel UL, Hagström A. Culturability and coexistence of colony-forming and single-cell marine bacterioplankton. Appl Environ Microbiol 2005; 71:4793-800. [PMID: 16085877 PMCID: PMC1183315 DOI: 10.1128/aem.71.8.4793-4800.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Culturability and coexistence of bacterioplankton exhibiting different life strategies were investigated in the Baltic Sea and Skagerrak Sea. Bacterial numbers were estimated using a dilution-to-extinction culturing assay (DCA) and calculated as the most probable number, based on six different methods to detect bacterial growth in the DCA. Irrespective of the method used to detect growth, the fraction of multiplying cells never exceeded 10%, using the total count of 4',6'-diamidino-2-phenylindole (DAPI)-stainable cells as a reference. Furthermore, the data also showed that non-colony-forming bacteria made up the majority of the viable cells, confirming molecular results showing dominance of non-colony-forming bacteria in clone libraries. The results obtained are in agreement with previous observations, indicating that bacterial assemblages in seawater are dominated by small, active subpopulations coexisting with a large group of inactive cells. The ratio of colony-forming to non-colony-forming bacteria was approximately 10 to 20 times higher in the brackish Baltic Sea than in the Skagerrak Sea. These two sea areas differ in (for example) their levels of bacterial production, dissolved organic carbon, and salinity. We suggest that the relative importance of colony-forming versus non-colony-forming bacterioplankton may be linked to environmental characteristics.
Collapse
Affiliation(s)
- Karin Simu
- Biology and Environmental Science, Marine Microbiology, University of Kalmar, SE-39182 Kalmar, Sweden
| | | | | | | |
Collapse
|
28
|
Toyoda K, Shibata A, Wada M, Nishimura M, Nomura H, Yoshida A, Okamoto K, Yamada M, Takada H, Kogure K, Ohwada K. Trophic Interactions among Marine Microbes in Oil-contaminated Seawater on a Mesocosmic Scale. Microbes Environ 2005. [DOI: 10.1264/jsme2.20.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Keita Toyoda
- Ocean Research Institute, The University of Tokyo
| | | | - Minoru Wada
- Ocean Research Institute, The University of Tokyo
| | | | | | | | - Ken Okamoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Mihoko Yamada
- Faculty of Agriculture, Tokyo University of Agriculture and Technology
| | - Hideshige Takada
- Faculty of Agriculture, Tokyo University of Agriculture and Technology
| | | | - Kouichi Ohwada
- Faculty of Environmental and Symbiotic Science, Prefectural University of Kumamoto
| |
Collapse
|
29
|
Abstract
Biofilms present complex assemblies of micro-organisms attached to surfaces. they are dynamic structures in which various metabolic activities and interactions between the component cells occur. When phage come in contact with biofilms, further interactions occur dependent on the susceptibility of the biofilm bacteria to phage and to the availability of receptor sites. If the phage also possess polysaccharide-degrading enzymes, or if considerable cell lysis is effected by the phage, the integrity of the biofilm may rapidly be destroyed. Alternatively, coexistence between phage and host bacteria within the biofilm may develop. Although phage have been proposed as a means of destroying or controlling biofilms, the technology for this has not yet been successfully developed.
Collapse
Affiliation(s)
- Ian W Sutherland
- Institute of Cell and Molecular Biology, University of Edinburgh, UK.
| | | | | | | |
Collapse
|
30
|
Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev 2004; 28:127-81. [PMID: 15109783 DOI: 10.1016/j.femsre.2003.08.001] [Citation(s) in RCA: 920] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2002] [Revised: 07/22/2003] [Accepted: 08/05/2003] [Indexed: 11/24/2022] Open
Abstract
The finding that total viral abundance is higher than total prokaryotic abundance and that a significant fraction of the prokaryotic community is infected with phages in aquatic systems has stimulated research on the ecology of prokaryotic viruses and their role in ecosystems. This review treats the ecology of prokaryotic viruses ('phages') in marine, freshwater and soil systems from a 'virus point of view'. The abundance of viruses varies strongly in different environments and is related to bacterial abundance or activity suggesting that the majority of the viruses found in the environment are typically phages. Data on phage diversity are sparse but indicate that phages are extremely diverse in natural systems. Lytic phages are predators of prokaryotes, whereas lysogenic and chronic infections represent a parasitic interaction. Some forms of lysogeny might be described best as mutualism. The little existing ecological data on phage populations indicate a large variety of environmental niches and survival strategies. The host cell is the main resource for phages and the resource quality, i.e., the metabolic state of the host cell, is a critical factor in all steps of the phage life cycle. Virus-induced mortality of prokaryotes varies strongly on a temporal and spatial scale and shows that phages can be important predators of bacterioplankton. This mortality and the release of cell lysis products into the environment can strongly influence microbial food web processes and biogeochemical cycles. Phages can also affect host diversity, e.g., by 'killing the winner' and keeping in check competitively dominant species or populations. Moreover, they mediate gene transfer between prokaryotes, but this remains largely unknown in the environment. Genomics or proteomics are providing us now with powerful tools in phage ecology, but final testing will have to be performed in the environment.
Collapse
Affiliation(s)
- Markus G Weinbauer
- Department of Biological Oceanography, Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands.
| |
Collapse
|
31
|
Abstract
Phytoplankton population dynamics are the result of imbalances between reproduction and losses. Losses include grazing, sinking, and natural mortality. As the importance of microbes in aquatic ecology has been recognized, so has the potential significance of viruses as mortality agents for phytoplankton. The field of algal virus ecology is steadily changing and advancing as new viruses are isolated and new methods are developed for quantifying the impact of viruses on phytoplankton dynamics and diversity. With this development, evidence is accumulating that viruses can control phytoplankton dynamics through reduction of host populations, or by preventing algal host populations from reaching high levels. The identification of highly specific host ranges of viruses is changing our understanding of population dynamics. Viral-mediated mortality may not only affect algal species succession, but may also affect intraspecies succession. Through cellular lysis, viruses indirectly affect the fluxes of energy, nutrients, and organic matter, especially during algal bloom events when biomass is high. Although the importance of viruses is presently recognized, it is apparent that many aspects of viral-mediated mortality of phytoplankton are still poorly understood. It is imperative that future research addresses the mechanisms that regulate virus infectivity, host resistance, genotype richness, abundance, and the fate of viruses over time and space.
Collapse
Affiliation(s)
- Corina P D Brussaard
- Department of Biological Oceanography, Royal Netherlands Institute for Sea Research, P.O. Box 59, NL-1790 AB Den Burg, Texel, The Netherlands.
| |
Collapse
|
32
|
Fuhrman JA, Schwalbach M. Viral influence on aquatic bacterial communities. THE BIOLOGICAL BULLETIN 2003; 204:192-195. [PMID: 12700152 DOI: 10.2307/1543557] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bacterial viruses, or bacteriophages, have numerous roles in marine systems. Although they are now considered important agents of mortality of bacteria, a second possible role of regulating bacterial community composition is less well known. The effect on community composition derives from the presumed species-specificity and density-dependence of infection. Although models have described the "kill the winner" hypothesis of such control, there are few observational or experimental demonstrations of this effect in complex natural communities. We report here on some experiments that demonstrate that viruses can influence community composition in natural marine communities. Although the effect is subtle over the time frame suitable for field experiments (days), the cumulative effect over months or years would be substantial. Other virus roles, such as in genetic exchange or microbial evolution, have the potential to be extremely important, but we know very little about them.
Collapse
Affiliation(s)
- J A Fuhrman
- University of Southern California, Los Angeles, California 90089-0371, USA.
| | | |
Collapse
|