1
|
Xing H, Liu X, He Q, Wang W. Progress and Prospects of Polymer/One-Dimensional Nanoclay Superabsorbent Composites. Polymers (Basel) 2025; 17:669. [PMID: 40076161 PMCID: PMC11902377 DOI: 10.3390/polym17050669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Superabsorbent materials (SAMs), featuring a three-dimensional (3D) hydrophilic polymer network, can absorb and retain water up to thousands of times their own weight, even under pressure. This makes them indispensable in various fields, including hygiene products and agriculture. The water absorption capacity of SAMs is influenced by the presence of hydrophilic groups and a swellable network structure. To optimize performance, one must adjust the types and concentrations of functional groups. Additionally, changes in the density and regularity of the polymer network are necessary. Significant performance improvements are limited by inherent challenges in modifying polymer chains or networks. To enhance performance, researchers focus on manipulating the components and structure of the polymer network. Effective water retention requires the network to fully expand while maintaining its strength. Incorporating nanoparticles, especially one-dimensional (1D) nanoclays, minimizes chain entanglement and prevents network collapse during drying. This approach effectively addresses the above challenges. Upon swelling, these nanoparticles improve hydrogen bonding within the polymer network, significantly boosting the performance of SAMs. Nanoclays are abundant natural silicates found in various nanostructures like nanorods, nanofibers, and nanotubes. These nanoclays contain reactive silanol groups that form strong hydrogen bonds with polymer chains. This aids in network formation and reduces costs. Advances in synthesis and structural control have facilitated the development of versatile 1D nanoclay-based SAMs. This paper reviews the structure, characteristics, and applications of such materials and proposes future research directions aimed at developing higher-performance clay-based SAMs.
Collapse
Affiliation(s)
- Haifeng Xing
- College of Resources and Environmental Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Xiangyu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010030, China; (X.L.); (Q.H.)
| | - Qingdong He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010030, China; (X.L.); (Q.H.)
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010030, China; (X.L.); (Q.H.)
| |
Collapse
|
2
|
Zhang D, Ye J, Song Y, Wei Y, Jiang S, Chen Y, Shao X. Isomerization and Stabilization of Amygdalin from Peach Kernels. Molecules 2023; 28:molecules28114550. [PMID: 37299025 DOI: 10.3390/molecules28114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, isomerization conditions, cytotoxic activity, and stabilization of amygdalin from peach kernels were analyzed. Temperatures greater than 40 °C and pHs above 9.0 resulted in a quickly increasing isomer ratio (L-amygdalin/D-amygdalin). At acidic pHs, isomerization was significantly inhibited, even at high temperature. Ethanol inhibited isomerization; the isomer rate decreased with the ethanol concentration increasing. The growth-inhibitory effect on HepG2 cells of D-amygdalin was diminished as the isomer ratio increased, indicating that isomerization reduces the pharmacological activity of D-amygdalin. Extracting amygdalin from peach kernels by ultrasonic power at 432 W and 40 °C in 80% ethanol resulted in a 1.76% yield of amygdalin with a 0.04 isomer ratio. Hydrogel beads prepared by 2% sodium alginate successfully encapsulated the amygdalin, and its encapsulation efficiency and drug loading rate reached 85.93% and 19.21%, respectively. The thermal stability of amygdalin encapsulated in hydrogel beads was significantly improved and reached a slow-release effect in in vitro digestion. This study provides guidance for the processing and storage of amygdalin.
Collapse
Affiliation(s)
- Decai Zhang
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Jianfen Ye
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Yu Song
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Yingying Wei
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Shu Jiang
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Yi Chen
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Xingfeng Shao
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| |
Collapse
|
3
|
Qin L, Cao J, Xu H, Li N, Wang K, Zhang L, Qu C, Miao J. Structural characterization of a sulfated polysaccharide from Ishige okamurae and its effect on recovery from immunosuppression. Int J Biol Macromol 2023; 236:123948. [PMID: 36898463 DOI: 10.1016/j.ijbiomac.2023.123948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/05/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
A sulfated polysaccharide from the brown alga Ishige okamurae Yendo, designated IOY, was successfully isolated by anion-exchange and size-exclusion chromatography. Chemical and spectroscopic analyses demonstrated that IOY was a fucoidan, that consisted of →3)-α-l-Fucp-(1→, →4)-α-l-Fucp-(1→, →6)-β-d-Galp-(1 → and →3)-β-d-Galp-(1 → residues with sulfate groups at C-2/C-4 the of (1 → 3)-α-l-Fucp and C-6 the of (1 → 3)-β-d-Galp residues. IOY possessed a potent immunomodulatory effect in vitro as measured by lymphocyte proliferation assay. The immunomodulatory effect of IOY was further investigated in vivo using immunosuppressed mice induced by cyclophosphamide (CTX). The results showed that IOY significantly increased the spleen and thymus indexes and alleviated CTX-induced spleen and thymus damage. Furthermore, IOY had a significant effect on hematopoietic function recovery and promoted the secretion of interleukin-2 (IL-2) and tumor necrosis factor (TNF-α). Notably, IOY reversed CD4+ and CD8+ T cell reduction and improved immune response. These data indicated that IOY had vital in immunomodulatory function and could be used as drug or functional food to lessen chemotherapy-induced immunosuppression.
Collapse
Affiliation(s)
- Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Hui Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Nianxu Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Biomedical Polymers, Shandong Academy of Pharmaceutical Science, Jinan, 250100, China.
| |
Collapse
|
4
|
Silva do Nascimento D, Etcheverry M, Orduz AE, Waiman CV, Zanini GP. Adsorption of cationic surfactant as a probe of the montmorillonite surface reactivity in the alginate hydrogel composites. RSC Adv 2022; 12:35469-35476. [PMID: 36540257 PMCID: PMC9742988 DOI: 10.1039/d2ra07405b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2024] Open
Abstract
Adsorption of a cationic surfactant allowed to probe the surface reactivity of montmorillonite encapsulated in a composite of alginate hydrogels (A-MMT). Dodecylbenzyldimethylammonium chloride (BAC-12) was the surfactant used for these studies. BAC-12 is part of the widely used surfactant mixture known as benzalkonium chloride. XRD showed that up to three different types of basal spacing (d 001) were present within the composite indicating that as the concentration of adsorbed BAC-12 increases, populations with different adsorption conformational arrangements are present, even unexpanded clay remains. From the SEM-EDS spectra it is observed that the clay is distributed in the whole composite. In addition, the effect of the presence of cationic and anionic biocides on BAC-12 adsorption was studied. Cationic biocides such as tetradecyllbenzyldimethylammonium chlorides (BAC-14) and paraquat (PQ) show a competitive behavior for the clay adsorption sites at BAC-12 low concentration indicating an electrostatic adsorption mechanism. However, the presence of anionic contaminants such as 2,4-D and metsulfuron methyl do not affect surfactant adsorption. In all scenarios is observed an abrupt increase of BAC-12 adsorbed amount reaching values higher than the clay CEC suggesting strong tail-tail interactions. This occurs at concentrations 10 times lower than the CMC of BAC-12 promoted by clay encapsulation in the composite. In these composites the alginate does not affect the surface reactivity of the clay, but the formation of the hydrogel allows it to be easily extracted from aqueous media which makes it an interesting material with a potential use in water remediation.
Collapse
Affiliation(s)
- Danielle Silva do Nascimento
- INQUISUR (UNS-CONICET), Departamento de Química, Universidad Nacional del Sur Av. Alem 1253 B8000CPB-Bahía Blanca Argentina
| | - Mariana Etcheverry
- INQUISUR (UNS-CONICET), Departamento de Química, Universidad Nacional del Sur Av. Alem 1253 B8000CPB-Bahía Blanca Argentina
| | - Angie E Orduz
- INQUISUR (UNS-CONICET), Departamento de Química, Universidad Nacional del Sur Av. Alem 1253 B8000CPB-Bahía Blanca Argentina
| | - Carolina V Waiman
- INQUISUR (UNS-CONICET), Departamento de Química, Universidad Nacional del Sur Av. Alem 1253 B8000CPB-Bahía Blanca Argentina
| | - Graciela P Zanini
- INQUISUR (UNS-CONICET), Departamento de Química, Universidad Nacional del Sur Av. Alem 1253 B8000CPB-Bahía Blanca Argentina
| |
Collapse
|
5
|
Ahmad MM, Chatha SAS, Hussain AI, Khan I. Chemical modification and antioxidant activities of Carissa carandas fruit polysaccharides. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Lu X, Qin L, Guo M, Geng J, Dong S, Wang K, Xu H, Qu C, Miao J, Liu M. A novel alginate from Sargassum seaweed promotes diabetic wound healing by regulating oxidative stress and angiogenesis. Carbohydr Polym 2022; 289:119437. [PMID: 35483850 DOI: 10.1016/j.carbpol.2022.119437] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/12/2022] [Accepted: 03/29/2022] [Indexed: 01/02/2023]
Abstract
Diabetic skin ulcer is one of the most severe complications in diabetes, however, current therapeutic approaches are not effective enough. Agents modulating oxidative stress, inflammation, and angiogenesis are quite promising for alleviation of diabetic skin ulcers. In this study, a novel Sargassum kjellmanianum-derived polysaccharide (SARP) was prepared. SARP was an alginate with Mw of 45.4 kDa, consisting of 76.56% mannuronic acid, 18.89% guluronic acid, and 4.55% glucuronic acid. SARP could attenuate oxidative stress-induced cell damage via activating nuclear factor erythroid 2-related factor 2 (Nrf2). SARP also promoted the migration and tube formation of HUVECs, which was related to the increased vascular endothelial growth factor (VEGF) expression. In diabetic wound model, SARP (iv, 200 mg/kg) administration increased angiogenesis, alleviated oxidative stress, ameliorated diabetes-related aberrations, and thereby accelerated diabetic wound healing. These findings identified SARP had potential to be developed as a drug candidate for diabetic skin ulcers.
Collapse
Affiliation(s)
- Xuxiu Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China
| | - Meng Guo
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiajia Geng
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Songtao Dong
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Kai Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China
| | - Hui Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China
| | - Changfeng Qu
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China
| | - Jinlai Miao
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; Guangxi Academy of Sciences, Nanning 530007, China..
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
7
|
Sousa MU, Rodrigues AM, Araujo MEB, Menezes RR, Neves GA, Lira HL. Adsorption of Sodium Diclofenac in Functionalized Palygoskite Clays. MATERIALS 2022; 15:ma15082708. [PMID: 35454400 PMCID: PMC9028255 DOI: 10.3390/ma15082708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 11/30/2022]
Abstract
The effects of acid and organo-functionalizations on the surface of Brazilian palygorskite clay was investigated, evaluating its potential in the adsorptive capacity of the drug sodium diclofenac present in wastewaters. The modifications on the clay structure were investigated by X-ray diffraction, X-ray fluorescence, thermogravimetric, differential thermal analysis, Fourier transform infrared spectroscopy, surface area by N2 adsorption (77.5 K) and Zeta potential. The experimental design was carried out to find the best conditions for the adsorption tests, in which concentration, mass and pH were significant. In the kinetic study, the pseudo-second-order model better described the adsorption process for acid and organo-functionalized samples. Such results indicate that the adsorption behavior probably occurs due to the phenomenon of chemisorption. Regarding the adsorption isotherms, the Langmuir model was the one that best adjusted both the experimental data of acid and the organo-functionalized samples, whose maximum adsorption capacity were 179.88 and 253.34 mg/g, respectively. This model also indicates that the sodium diclofenac is adsorbed to monolayers homogeneously through chemisorption. In general, the studied clays proved to be suitable adsorbents for the removal of sodium diclofenac.
Collapse
Affiliation(s)
- Matheus Urtiga Sousa
- Graduate Program in Materials Science and Engineering (PPG-CEMat), Federal University of Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil;
- Correspondence:
| | - Alisson Mendes Rodrigues
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil; (A.M.R.); (R.R.M.); (G.A.N.); (H.L.L.)
| | - Maria Eduarda Barbosa Araujo
- Graduate Program in Materials Science and Engineering (PPG-CEMat), Federal University of Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil;
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil; (A.M.R.); (R.R.M.); (G.A.N.); (H.L.L.)
| | - Gelmires Araújo Neves
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil; (A.M.R.); (R.R.M.); (G.A.N.); (H.L.L.)
| | - Hélio Lucena Lira
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil; (A.M.R.); (R.R.M.); (G.A.N.); (H.L.L.)
| |
Collapse
|
8
|
Physicochemical and release behaviour of phytochemical compounds based on black jamun pulp extracts-filled alginate hydrogel beads through vibration dripping extrusion. Int J Biol Macromol 2022; 194:715-725. [PMID: 34822825 DOI: 10.1016/j.ijbiomac.2021.11.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 01/09/2023]
Abstract
The phytochemical-rich extract obtained from black jamun pulp were encapsulated using vibrating dripping extrusion technique. The utilisation of alginate (AL) with four variations of core-shell material comprising gum Arabic (AL-GA), guar gum (AL-GG), pectin (AL-P) and xanthan gum (AL-X) was engaged to form calcium-alginate based lyophilised jamun extract encapsulated beads. It resulted that among four variations, lyophilised alginate with AL-GG based encapsulated jamun extract filled beads have better physicochemical characteristics and 95% encapsulation efficiency. The results revealed the morphological comparison of each variation. The release behaviour of AL-GG based beads has a higher release of total phenolics (TPC) and total anthocyanin content (TAC). The release kinetics model involving Ritger-Peppas and Higuchi model were applied for release TPC and TAC of all variations of beads. The Ritger-Peppas model was found best suitable in terms of average R2 (0.965) and lowest χ2 (0.0039). The release kinetics study showed that AL-GA based beads followed by AL-GG could also be the best suitable in release behaviour using simulated gastrointestinal fluids at 140-160 min. Overall, results shown the encapsulated Jamun beads have the best agro-industrial efficacy in form of phytochemical compounds based microparticles, holding decent antioxidant potential.
Collapse
|
9
|
Swelling equilibria of novel propenamide/2-acrylamido-2-methyl-1-propanesulfonic acid/guar gum/clinoptilolite biohybrid hydrogels and application as a sorbent for BV1 removal. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Chen J, Li L, Zhang X, Wan L, Zheng Q, Xu D, Li Y, Liang Y, Chen M, Li B, Chen Z. Structural characterization of polysaccharide from Centipeda minima and its hypoglycemic activity through alleviating insulin resistance of hepatic HepG2 cells. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104478] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
11
|
Dong J, Cheng Z, Tan S, Zhu Q. Clay nanoparticles as pharmaceutical carriers in drug delivery systems. Expert Opin Drug Deliv 2020; 18:695-714. [PMID: 33301349 DOI: 10.1080/17425247.2021.1862792] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Clay minerals are a class of silicates with chemical inertness, colloid, and thixotropy, which have excellent physicochemical properties, good biocompatibility, low toxicity, and have high application potential in biomedical fields. These inorganic materials have been widely used in pharmaceutical excipients and active substances. In recent years, nanoclay mineral materials have been used as drug vehicles for the delivery of a variety of drugs based on their broad specific surface area, rich porosity, diverse morphology, good adsorption performance, and high ion exchange capacity. AREAS COVERED This review introduces the structures, properties, and applications of various common natural and synthetic nanoclay materials as drug carriers. Natural nanoclays have different morphologies including nanoplates, nanotubes, and nanofibers. Synthetic materials have controllable sizes and flexible structures, where mesoporous silica nanoparticles, laponite, and imogolite are typical ones. These inorganic nanoparticles are often linked to polymers to form multifunctional drug delivery systems for better pharmaceutical performance. EXPERT OPINION The clay nanomaterials have typical properties, including enhanced solubility of insoluble drugs, targeting therapeutic sites, controlled release, and stimulation of responsive drug delivery systems.
Collapse
Affiliation(s)
- Jiani Dong
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Zeneng Cheng
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Songwen Tan
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Qubo Zhu
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Gao J, Fan D, Song P, Zhang S, Liu X. Preparation and application of pH-responsive composite hydrogel beads as potential delivery carrier candidates for controlled release of berberine hydrochloride. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200676. [PMID: 33391786 PMCID: PMC7735363 DOI: 10.1098/rsos.200676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2005] [Accepted: 09/22/2020] [Indexed: 05/11/2023]
Abstract
For improving the effective concentration of berberine hydrochloride (BH) in the gastrointestinal tract, a series of pH-responsive hydrogel beads were prepared based on carboxymethylstarch-g-poly (acrylic acid)/palygorskite/starch/sodium alginate (CMS-g-PAA/PGS/ST/SA) in the present work. The developed hydrogel beads were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TG). Effect of palygorskite (PGS) content on the swelling properties of hydrogel beads and BH cumulative release were discussed. The pH responsiveness of hydrogel beads was also investigated in different media. Results illustrated that swelling of hydrogel beads and BH cumulative release from hydrogel beads were obviously affected by PGS content. The swelling ratio and BH cumulative release of composite hydrogel beads remarkably slowed down with PGS content increasing in the range from 10 to 40 wt%. The composite hydrogel beads were pH-responsive. At pH 7.4, the swelling ratio and BH cumulative release from composite hydrogel beads were the fastest among the dissolution media of pH 1.2, pH 6.8 and pH 7.4. The BH cumulative release from hydrogel beads was related to the swelling and relaxation of composite hydrogel beads and could be fitted better by the Higuchi model. The obtained composite hydrogel beads could be potentially used for the development of BH pharmaceutical dosage forms.
Collapse
Affiliation(s)
- Jiande Gao
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, People's Republic of China
- Author for correspondence: Jiande Gao e-mail:
| | - Dongying Fan
- Gansu Provincial Hospital of TCM, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Ping Song
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, People's Republic of China
| | - Shudan Zhang
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, People's Republic of China
| | - Xiong Liu
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, People's Republic of China
| |
Collapse
|
13
|
Ianchis R, Ninciuleanu CM, Gifu IC, Alexandrescu E, Nistor CL, Nitu S, Petcu C. Hydrogel-clay Nanocomposites as Carriers for Controlled Release. Curr Med Chem 2020; 27:919-954. [PMID: 30182847 DOI: 10.2174/0929867325666180831151055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022]
Abstract
The present review aims to summarize the research efforts undertaken in the last few years in the development and testing of hydrogel-clay nanocomposites proposed as carriers for controlled release of diverse drugs. Their advantages, disadvantages and different compositions of polymers/biopolymers with diverse types of clays, as well as their interactions are discussed. Illustrative examples of studies regarding hydrogel-clay nanocomposites are detailed in order to underline the progressive researches on hydrogel-clay-drug pharmaceutical formulations able to respond to a series of demands for the most diverse applications. Brief descriptions of the different techniques used for the characterization of the obtained complex hybrid materials such as: swelling, TGA, DSC, FTIR, XRD, mechanical, SEM, TEM and biology tests, are also included. Enlightened by the presented data, we can suppose that hydrogel-clay nanocomposites will still be a challenging subject of global assiduous researches. We can dare to dream to an efficient drug delivery platform for the treatment of multiple affection concomitantly, these being undoubtedly like "a tree of life" bearing different kinds of fruits and leaves proper for human healing.
Collapse
Affiliation(s)
- Raluca Ianchis
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Claudia Mihaela Ninciuleanu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Ioana Catalina Gifu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Elvira Alexandrescu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Cristina Lavinia Nistor
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Sabina Nitu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Cristian Petcu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| |
Collapse
|
14
|
Malik NS, Ahmad M, Minhas MU, Tulain R, Barkat K, Khalid I, Khalid Q. Chitosan/Xanthan Gum Based Hydrogels as Potential Carrier for an Antiviral Drug: Fabrication, Characterization, and Safety Evaluation. Front Chem 2020; 8:50. [PMID: 32117876 PMCID: PMC7010646 DOI: 10.3389/fchem.2020.00050] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/16/2020] [Indexed: 01/24/2023] Open
Abstract
This study investigated the use of pure polymer chitosan (CS), xanthan gum (XG), monomer 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and initiator potassium persulfate (KPS) as drug carrier system crosslinked through N' N'-methylene bis-acrylamide (MBA) for controlled drug delivery of acyclovir (ACV). ACV is highly effective and selective antiviral drugs used for prophylaxis and treatment against herpes simplex viruses (HSV) infections. Present oral marketed formulations are associated with number of side effects and shortcomings which hampered its clinical effectiveness. Hydrogels (FCX1-FCX9) composed of CS, XG, AMPS, MBA, and KPS were prepared by free radical polymerization technique and characterized through FTIR, PXRD, thermal analysis and SEM. Swelling dynamics and drug release behavior was also investigated. FTIR studies confirmed that ACV was successfully encapsulated into hydrogel polymeric network. SEM revealed porous structure whereas thermal analysis showed enhanced thermal stability of polymeric network. PXRD indicated amorphous dispersion of ACV during preparation process. Swelling dynamics and ACV release behavior from developed hydrogels was dependent on pH of the medium and concentration of pure reactants used. Korsmeyer-Peppas model was best fit to regression coefficient. The present work demonstrated a potential for developing a pH sensitive hydrogel for an antiviral drug ACV by using pure polymers CS, XG, and monomer AMPS.
Collapse
Affiliation(s)
- Nadia Shamshad Malik
- Department of Pharmacy, Capital University of Science & Technology, Islamabad, Pakistan
| | - Mahmood Ahmad
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan,*Correspondence: Mahmood Ahmad
| | | | - Ruqia Tulain
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Ikrima Khalid
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Qandeel Khalid
- Department of Pharmacy, The University of Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
15
|
Zhang Y, Li C, Chu D, Yan G, Zhu M, Zhao X, Gu J, Li G, Wang J, Zhang B. Process optimization for the preparation of thiamethoxam microspheres by response surface methodology. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Ktari N, Bkhairia I, Nasri M, Ben Salah R. Structure and biological activities of polysaccharide purified from Senegrain seed. Int J Biol Macromol 2020; 144:190-197. [DOI: 10.1016/j.ijbiomac.2019.12.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/28/2023]
|
17
|
Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K. Environment sensitive hydrogels for drug delivery applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109220] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Sources, structure, properties and health benefits of plant gums: A review. Int J Biol Macromol 2019; 135:46-61. [DOI: 10.1016/j.ijbiomac.2019.05.103] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/20/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022]
|
19
|
Patel MK, Tanna B, Gupta H, Mishra A, Jha B. Physicochemical, scavenging and anti-proliferative analyses of polysaccharides extracted from psyllium (Plantago ovata Forssk) husk and seeds. Int J Biol Macromol 2019; 133:190-201. [DOI: 10.1016/j.ijbiomac.2019.04.062] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 12/18/2022]
|
20
|
Physicochemical characterization, antioxidant and anti-proliferative activities of a polysaccharide extracted from psyllium (P. ovata) leaves. Int J Biol Macromol 2018; 118:976-987. [DOI: 10.1016/j.ijbiomac.2018.06.139] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 12/26/2022]
|
21
|
Farjadian F, Moghoofei M, Mirkiani S, Ghasemi A, Rabiee N, Hadifar S, Beyzavi A, Karimi M, Hamblin MR. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work? Biotechnol Adv 2018; 36:968-985. [PMID: 29499341 PMCID: PMC5971145 DOI: 10.1016/j.biotechadv.2018.02.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 12/28/2022]
Abstract
Drug delivery is a rapidly growing area of research motivated by the nanotechnology revolution, the ideal of personalized medicine, and the desire to reduce the side effects of toxic anti-cancer drugs. Amongst a bewildering array of different nanostructures and nanocarriers, those examples that are fundamentally bio-inspired and derived from natural sources are particularly preferred. Delivery of vaccines is also an active area of research in this field. Bacterial cells and their components that have been used for drug delivery, include the crystalline cell-surface layer known as "S-layer", bacterial ghosts, bacterial outer membrane vesicles, and bacterial products or derivatives (e.g. spores, polymers, and magnetic nanoparticles). Considering the origin of these components from potentially pathogenic microorganisms, it is not surprising that they have been applied for vaccines and immunization. The present review critically summarizes their applications focusing on their advantages for delivery of drugs, genes, and vaccines.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Mirkiani
- Biomaterials Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Shima Hadifar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Beyzavi
- Koch institute of MIT, 500 Main Street, Cambridge, MA, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
22
|
Dyab AKF, Mohamed LA, Taha F. Non-aqueous olive oil-in-glycerin (o/o) Pickering emulsions: Preparation, characterization and in vitro aspirin release. J DISPER SCI TECHNOL 2017. [DOI: 10.1080/01932691.2017.1406368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Amro K. F. Dyab
- Faculty of Science, Chemistry Department, Minia University, Minia, Egypt
| | - Lamiaa A. Mohamed
- Faculty of Science, Chemistry Department, Minia University, Minia, Egypt
| | - Fouad Taha
- Faculty of Science, Chemistry Department, Minia University, Minia, Egypt
| |
Collapse
|
23
|
Ilgin P, Selcuk Zorer O, Ozay O, Boran G. Synthesis and characterization of 2-hydroxyethylmethacrylate/2-(3-indol-yl)ethylmethacrylamide-based novel hydrogels as drug carrier with in vitro
antibacterial properties. J Appl Polym Sci 2017. [DOI: 10.1002/app.45550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pinar Ilgin
- Department of Chemistry, Faculty of Science; Van Yuzuncu Yil University; Van Turkey
| | - Ozlem Selcuk Zorer
- Department of Chemistry, Faculty of Science; Van Yuzuncu Yil University; Van Turkey
| | - Ozgur Ozay
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School; Canakkale Onsekiz Mart University; Canakkale Turkey
| | - Gokhan Boran
- Department of Food Engineering, Faculty of Engineering; Van Yuzuncu Yil University; Van Turkey
| |
Collapse
|
24
|
Munir H, Shahid M, Anjum F, Mudgil D. Structural, thermal and rheological characterization of modified Dalbergia sissoo gum—A medicinal gum. Int J Biol Macromol 2016; 84:236-45. [DOI: 10.1016/j.ijbiomac.2015.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 12/30/2022]
|
25
|
Chitosan-Montmorillonite Polymer Composites: Formulation and Evaluation of Sustained Release Tablets of Aceclofenac. Sci Pharm 2015; 84:603-617. [PMID: 28656939 PMCID: PMC5198020 DOI: 10.3390/scipharm84040603] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 10/22/2015] [Indexed: 11/17/2022] Open
Abstract
The present study reports the preparation and evaluation of polymer composites of chitosan and montmorillonite. The prepared polymer composites were evaluated for various powder properties and characterized by FTIR-ATR (Fourier Transform Infrared Spectroscopy- Attenuated Total Reflectance), XRD (X Ray Diffraction), and SEM (Scaning Electron Microscopy) techniques. Heckel and Kawakita equations indicated good compression characteristics of the composites. The polymer composites were employed in formulating sustained release tablets of aceclofenac. The formation of intercalated lamellar structures due to the entrapment of clay particles in the polymeric matrix network was found to be responsible for the drug release retardant behavior of the composites. The in vitro drug release data were fitted to various models like zero-order, first-order, Higuchi, Korsmeyer-Peppas, and Hixon and Crowell for studying the mechanism of drug release from the formulation. The value of release exponent (n) was found to range between 0.59 and 0.82, indicating non-Fickian (anomalous) drug release behavior. Swelling-induced diffusion of the drug through the polymer matrix and polymer matrix chain relaxation appeared to play a role in the release of the drug from the polymer composites.
Collapse
|
26
|
Karadağ E, Ödemiş H, Kundakçi S, Üzüm ÖB. Swelling Characterization of Acrylamide/Zinc Acrylate/Xanthan Gum/Sepiolite Hybrid Hydrogels and Its Application in Sorption of Janus Green B from Aqueous Solutions. ADVANCES IN POLYMER TECHNOLOGY 2015. [DOI: 10.1002/adv.21547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Erdener Karadağ
- Chemistry Department; Fen-Edebiyat Faculty; Adnan Menderes University; 09010 Aydın Turkey
| | - Hatice Ödemiş
- Chemistry Department; Fen-Edebiyat Faculty; Adnan Menderes University; 09010 Aydın Turkey
| | - Semiha Kundakçi
- Chemistry Department; Fen-Edebiyat Faculty; Adnan Menderes University; 09010 Aydın Turkey
| | - Ömer Bariş Üzüm
- Chemistry Department; Fen-Edebiyat Faculty; Adnan Menderes University; 09010 Aydın Turkey
| |
Collapse
|
27
|
Watkins KA, Chen R. pH-responsive, lysine-based hydrogels for the oral delivery of a wide size range of molecules. Int J Pharm 2015; 478:496-503. [DOI: 10.1016/j.ijpharm.2014.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 01/14/2023]
|
28
|
Alam BM, Aouak T, Alandis NM, Alam MM. Synthesis, Characterization, Drug Solubility Enhancement, and Drug Release Study of Poly(Methacrylic Acid-graft-Simvastatin). INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.936595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Mudassir J, Darwis Y, Khiang PK. Prerequisite Characteristics of Nanocarriers Favoring Oral Insulin Delivery: Nanogels as an Opportunity. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.921919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Kjøniksen AL, Calejo MT, Zhu K, Nyström B, Sande SA. Stabilization of Pluronic Gels by Hydrophobically Modified Hydroxyethylcellulose. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.886245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Singh VK, Banerjee I, Agarwal T, Pramanik K, Bhattacharya MK, Pal K. Guar gum and sesame oil based novel bigels for controlled drug delivery. Colloids Surf B Biointerfaces 2014; 123:582-92. [PMID: 25444661 DOI: 10.1016/j.colsurfb.2014.09.056] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/05/2014] [Accepted: 09/28/2014] [Indexed: 11/28/2022]
Abstract
Bigels are novel semi-solid formulations which have been drawing attention of many research scientists due to their numerous advantages over the conventional gels. The objective of this study was to develop and characterize novel bigels by mixing guar gum hydrogel and sorbitan monostearate-sesame oil based organogel for controlled drug delivery applications. The confocal microscopy suggested the existence of both aqueous and oil phases together as bigel. Micro-scale deformation (viscometric) analysis in conjugation with macro-scale deformation studies suggested shear-thinning and viscoelastic nature of the bigels. Thermal study suggested an increase in thermal stability with the increase in organogel proportion in the bigels. The developed bigels were biocompatible in nature. The in vitro drug release study showed that the release of ciprofloxacin (lipophilic drug) increased with a decrease in the organogel content. Further analysis showed that the drug release from all the bigels followed zero order diffusion kinetics which is desirable for a controlled release system. The drug loaded gels showed good antimicrobial efficiency against Bacillus subtilis. In conclusion, the developed bigels may be tried as matrices for topical drug delivery.
Collapse
Affiliation(s)
- Vinay K Singh
- Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Indranil Banerjee
- Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India.
| | - Tarun Agarwal
- Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Krishna Pramanik
- Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | | | - Kunal Pal
- Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
32
|
Mahkam M, Latifpour A, Rafi AA, Gheshlaghi LM, Takfallah A. Preparation of Montmorillonite-pH-Sensitive Positive Charges Nanocomposites as a Drug Delivery System. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.886241] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Liu HJ, Chu HC, Lin LH, Hsu SY. Preparation and Drug Release of Aspirin-Loaded PLGA-PEG-PLGA/Montmorillonite Microparticles. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.886238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Karadağ E, Hasgül B, Kundakci S, Üzüm ÖB. A Study of Polymer/Clay Hybrid Composite Sorbent-Based AAm/SMA Hydrogels and Semi-IPNs Composed ofɩ-Carrageenan and Montmorillonite for Water and Dye Sorption. ADVANCES IN POLYMER TECHNOLOGY 2014. [DOI: 10.1002/adv.21432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Erdener Karadağ
- Chemistry Department; Fen-Edebiyat Faculty; Adnan Menderes University; 09010 Aydın Turkey
| | - Banu Hasgül
- Chemistry Department; Fen-Edebiyat Faculty; Adnan Menderes University; 09010 Aydın Turkey
| | - Semİha Kundakci
- Chemistry Department; Fen-Edebiyat Faculty; Adnan Menderes University; 09010 Aydın Turkey
| | - Ömer Bariş Üzüm
- Chemistry Department; Fen-Edebiyat Faculty; Adnan Menderes University; 09010 Aydın Turkey
| |
Collapse
|
35
|
Shefy-Peleg A, Foox M, Cohen B, Zilberman M. Novel Antibiotic-Eluting Gelatin-Alginate Soft Tissue Adhesives for Various Wound Closing Applications. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2013.862535] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Al-Adeemy SA, Alsheikh M, Aouak T. Modification of Starch by Grafting Acetylsalicylic Acid: Synthesis, Characterization, and Application in Drug Release Domain. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2013.869744] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Ding S, Shen Y, Walters KB, Chen J, Jin Y. pH Responsive Behavior of Fe3O4@PDEA-PEGMA Core-Shell Hybrid Magnetic Nanoparticles. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2013.854219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Kumar S, Negi YS. Cellulose and Xylan Based Prodrug of Diclofenac Sodium: Synthesis, Physicochemical Characterization and In Vitro Release. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2013.830256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Malana MA, Bukhari JUD, Zohra R. Synthesis, swelling behavior, and network parameters of novel chemically crosslinked poly (acrylamide-co-methacrylate-co-acrylic acid) hydrogels. Des Monomers Polym 2013. [DOI: 10.1080/15685551.2013.840501] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
| | | | - Rubab Zohra
- Department of Chemistry, Forman Christian College, A Chartered University, Lahore, Pakistan
| |
Collapse
|
40
|
Fan L, Zhang J, Wang A. In situ generation of sodium alginate/hydroxyapatite/halloysite nanotubes nanocomposite hydrogel beads as drug-controlled release matrices. J Mater Chem B 2013; 1:6261. [DOI: 10.1039/c3tb20971g] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|