Lalegül-Ülker Ö, Elçin AE, Elçin YM. Intrinsically Conductive Polymer Nanocomposites for Cellular Applications.
ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018;
1078:135-153. [PMID:
30357622 DOI:
10.1007/978-981-13-0950-2_8]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intrinsically conductive polymer nanocomposites have a remarkable potential for cellular applications such as biosensors, drug delivery systems, cell culture systems and tissue engineering biomaterials. Intrinsically conductive polymers transmit electrical stimuli between cells, and induce regeneration of electroactive tissues such as muscle, nerve, bone and heart. However, biocompatibility and processability are common issues for intrinsically conductive polymers. Conductive polymer composites are gaining importance for tissue engineering applications due to their excellent mechanical, electrical, optical and chemical functionalities. Here, we summarize the different types of intrinsically conductive polymers containing electroactive nanocomposite systems. Cellular applications of conductive polymer nanocomposites are also discussed focusing mainly on poly(aniline), poly(pyrrole), poly(3,4-ethylene dioxythiophene) and poly(thiophene).
Collapse