1
|
Shirzad H, Panji M, Nezhad SAM, Houshmand P, Tamai IA. One-pot rapid visual detection of E. coli O157:H7 by label-free AuNP-based plasmonic-aptasensor in water sample. J Microbiol Methods 2024; 217-218:106858. [PMID: 38040292 DOI: 10.1016/j.mimet.2023.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023]
Abstract
Access to clean water for irrigation and drinking has long been a global concern. The need for fast, precise, and cost-effective methods to detect harmful bacteria like Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is high due to the potential for severe infectious diseases. Fortunately, recent research has led to developing and utilizing rapid bacterial detection methods. The creation of an aptamer-based biosensor (aptasensor) for the detection of E. coli O157:H7 using label-free aptamers and gold nanoparticles (AuNPs) is described in this study. The specific aptamers that can detect target bacteria are adsorbed on the surface of unmodified AuNPs to form the aptasensor. The detection is performed by target bacterium-induced aptasensor aggregation, which is associated with a red-to-purple color change under high-salt circumstances. We devised a quick and easy method for detecting bacteria using an anti-E. coli O157:H7 aptamer without the need for specialized equipment or pretreatment processes like cell lysis. The aptasensor could identify target bacteria with only as few as 250 colony-forming units (CFU)/ml in 15 min or less, and its specificity based on our test was 100%. This method not only provides a fast direct preparation process but also exhibits remarkable proficiency in promptly identifying the intended target with a heightened level of sensitivity and specificity. Therefore, it can serve as an intelligent tool for monitoring water reservoirs and preventing the transmission of infectious diseases associated with EHEC.
Collapse
Affiliation(s)
- Hadi Shirzad
- Research Center for Life & Health Sciences & Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran, Iran
| | - Mohammad Panji
- Research Center for Life & Health Sciences & Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran, Iran
| | - Seyed Amin Mousavi Nezhad
- Research Center for Life & Health Sciences & Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran, Iran
| | - Pouya Houshmand
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | |
Collapse
|
2
|
Er Zeybekler S, Odaci D. Carbon Nanotube-Incorporated Nanofibers for Immunosensor Preparation against CD36. ACS OMEGA 2023; 8:5776-5786. [PMID: 36816687 PMCID: PMC9933220 DOI: 10.1021/acsomega.2c07458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The increased serum concentration of CD36 is significantly associated with atherosclerosis, insulin resistance, and diabetes mellitus. Currently, there is no sensor system used for the detection of CD36 in the clinical field. Therefore, there is a need to develop a sensor system for the detection of CD36. The large surface area/volume ratio and controllable surface conformation of electrospun nanofibers (ENs) make them highly attractive for immunosensor applications. In the present study, PS/MWCNT-PAMAM ENs were produced and used as an immobilization matrix of Anti-CD36. Thus, the electrochemical behavior of the developed nanocomposite-based ENs and their usage potential were investigated for immunosensor applications. First, an oxidized multiwall carbon nanotube (MWCNT-OH) was synthesized and modified with a polyamidoamine generation 3 (PAMAM G3) dendrimer. The synthesized MWCNT-PAMAM nanocomposite was mixed with polystyrene (PS) solutions at different ratios to produce bead-free, smooth, and uniform PS/MWCNT-PAMAM ENs. PS/MWCNT-PAMAM ENs were accumulated on a screen-printed carbon electrode (SPCE) using the electrospinning technique. A biofunctional surface on the PS/MWCNT-PAMAM EN-coated SPCE was created using carbodiimide chemistry by covalent immobilization of Anti-CD36. The analytic performance characteristics of the developed PS/MWCNT-PAMAM/Anti-CD36 immunosensor were determined by performing electrochemical measurements in the presence of the CD36 protein. The linear detection range was found to be from 5 to 40 ng/mL, and the limit of detection was calculated as 3.94 ng/mL for CD36. The developed PS/MWCNT-PAMAM/Anti-CD36 immunosensor also displayed high tolerance to interference substances, good repeatability, and high recovery percent (recovery%) for artificial blood serum analysis.
Collapse
|
3
|
Nnachi RC, Sui N, Ke B, Luo Z, Bhalla N, He D, Yang Z. Biosensors for rapid detection of bacterial pathogens in water, food and environment. ENVIRONMENT INTERNATIONAL 2022; 166:107357. [PMID: 35777116 DOI: 10.1016/j.envint.2022.107357] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Conventional techniques (e.g., culture-based method) for bacterial detection typically require a central laboratory and well-trained technicians, which may take several hours or days. However, recent developments within various disciplines of science and engineering have led to a major paradigm shift in how microorganisms can be detected. The analytical sensors which are widely used for medical applications in the literature are being extended for rapid and on-site monitoring of the bacterial pathogens in food, water and the environment. Especially, within the low-resource settings such as low and middle-income countries, due to the advantages of low cost, rapidness and potential for field-testing, their use is indispensable for sustainable development of the regions. Within this context, this paper discusses analytical methods and biosensors which can be used to ensure food safety, water quality and environmental monitoring. In brief, most of our discussion is focused on various rapid sensors including biosensors and microfluidic chips. The analytical performances such as the sensitivity, specificity and usability of these sensors, as well as a brief comparison with the conventional techniques for bacteria detection, form the core part of the discussion. Furthermore, we provide a holistic viewpoint on how future research should focus on exploring the synergy of different sensing technologies by developing an integrated multiplexed, sensitive and accurate sensors that will enable rapid detection for food safety, water and environmental monitoring.
Collapse
Affiliation(s)
- Raphael Chukwuka Nnachi
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bowen Ke
- Laboratory of Anesthesiology & Critical Care Medicine, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 61004, PR China
| | - Zhenhua Luo
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom
| | - Nikhil Bhalla
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, BT37 0QB Jordanstown, Northern Ireland, United Kingdom; Healthcare Technology Hub, Ulster University, Jordanstown Shore Road, BT37 0QB, Northern Ireland, United Kingdom
| | - Daping He
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom.
| |
Collapse
|
4
|
Xu R, Cheng Y, Li X, Zhang Z, Zhu M, Qi X, Chen L, Han L. Aptamer-based signal amplification strategies coupled with microchips for high-sensitivity bioanalytical applications: A review. Anal Chim Acta 2022; 1209:339893. [DOI: 10.1016/j.aca.2022.339893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023]
|
5
|
Spagnolo S, De La Franier B, Davoudian K, Hianik T, Thompson M. Detection of E. coli Bacteria in Milk by an Acoustic Wave Aptasensor with an Anti-Fouling Coating. SENSORS 2022; 22:s22051853. [PMID: 35270999 PMCID: PMC8914748 DOI: 10.3390/s22051853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Milk is a significant foodstuff around the world, being produced and consumed in large quantities. The safe consumption of milk requires that the liquid has an acceptably low level of microbial contamination and has not been subjected to spoiling. Bacterial safety limits in milk vary by country but are typically in the thousands per mL of sample. To rapidly determine if samples contain an unsafe level of bacteria, an aptamer-based sensor specific to Escherichia coli bacteria was developed. The sensor is based on an ultra-high frequency electromagnetic piezoelectric acoustic sensor device (EMPAS), with the aptamer being covalently bound to the sensor surface by the anti-fouling linker, MEG-Cl. The sensor is capable of the selective measurement of E. coli in PBS and in cow’s milk samples down to limits of detection of 35 and 8 CFU/mL, respectively, which is well below the safe limits for commercial milk products. This sensing system shows great promise for the milk industry for the purpose of rapid verification of product safety.
Collapse
Affiliation(s)
- Sandro Spagnolo
- Faculty of Mathematics, Physics and Information, Comenius University, Mlynská dolina F1, 842 48 Bratislava, Slovakia; (S.S.); (T.H.)
| | - Brian De La Franier
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; (B.D.L.F.); (K.D.)
| | - Katharina Davoudian
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; (B.D.L.F.); (K.D.)
| | - Tibor Hianik
- Faculty of Mathematics, Physics and Information, Comenius University, Mlynská dolina F1, 842 48 Bratislava, Slovakia; (S.S.); (T.H.)
| | - Michael Thompson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; (B.D.L.F.); (K.D.)
- Correspondence: ; Tel.: +1-416-978-3575
| |
Collapse
|
6
|
Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 2021; 230:122026. [PMID: 33934756 PMCID: PMC7854185 DOI: 10.1016/j.talanta.2020.122026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a potential risk for public health and the global economy. Fast and accurate detection of the pathogens that cause these infections is important to avoid the transmission of the diseases. Conventional methods for the detection of these microorganisms are time-consuming, costly, and not applicable for on-site monitoring. Biosensors can provide a fast, reliable, and point of care diagnostic. Nanomaterials, due to their outstanding electrical, chemical, and optical features, have become key players in the area of biosensors. This review will cover different nanomaterials that employed in electrochemical, optical, and instrumental biosensors for infectious disease diagnosis and how these contributed to enhancing the sensitivity and rapidity of the various sensing platforms. Examples of nanomaterial synthesis methods as well as a comprehensive description of their properties are explained. Moreover, when available, comparative data, in the presence and absence of the nanomaterials, have been reported to further highlight how the usage of nanomaterials enhances the performances of the sensor.
Collapse
Affiliation(s)
- Elham Sheikhzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding author
| | - Valerio Beni
- Digital Systems, Department Smart Hardware, Unit Bio–& Organic Electronics, RISE Acreo, Research Institutes of Sweden, Norrkoping, 60221, Sweden
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia,King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia,Corresponding author. Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
7
|
Qaanei M, Taheri RA, Eskandari K. Electrochemical aptasensor for Escherichia coli O157:H7 bacteria detection using a nanocomposite of reduced graphene oxide, gold nanoparticles and polyvinyl alcohol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3101-3109. [PMID: 34156042 DOI: 10.1039/d1ay00563d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent years, public attention has drawn to food safety due to the constant outbreaks of foodborne diseases; subsequently, to control and prevent this group of diseases, early screening of foodborne pathogens has become significant. In this study, a new aptamer-based electrochemical sensor was proposed to detect Escherichia coli O157:H7 (E. coli), one of the most threatening bacterial pathogens, using nanoparticles-modified glassy carbon electrode. Firstly, the electrode was coated with a reduced graphene oxide-poly(vinyl alcohol) and gold nanoparticles nanocomposite (AuNPs/rGO-PVA/GCE) to increase the electrode surface area and consequently raise the sensor sensitivity. Afterwards, to enhance the selectivity of the modified electrode, aptamers were attached to the surface of the prepared electrode. The prepared electrode was characterized using energy-dispersive spectroscopy, field-emission scanning electron microscopy, atomic force microscopy, Fourier-transform infrared spectroscopy, and electrochemical impedance spectroscopy. The relationship of the E. coli concentration and the peak current in the range from 9.2 CFU mL-1 to 9.2 × 108 CFU mL-1 was linear, and the limit of detection was calculated as 9.34 CFU mL-1. The suitability of the proposed sensor for real sample measurements was investigated by recovery studies in tap water, milk, and meat samples. The results showed that the biosensor and traditional culture counting methods are equally sensitive for detecting E. coli.
Collapse
Affiliation(s)
- Masood Qaanei
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
8
|
Kordasht HK, Hasanzadeh M, Seidi F, Alizadeh PM. Poly (amino acids) towards sensing: Recent progress and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Bruce JA, Clapper JC. Conjugation of Carboxylated Graphene Quantum Dots with Cecropin P1 for Bacterial Biosensing Applications. ACS OMEGA 2020; 5:26583-26591. [PMID: 33110986 PMCID: PMC7581262 DOI: 10.1021/acsomega.0c03342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/25/2020] [Indexed: 05/03/2023]
Abstract
Biosensors that can accurately and rapidly detect bacterial concentrations in solution are important for potential applications such as assessing drinking water safety. Meanwhile, quantum dots have proven to be strong candidates for biosensing applications in recent years because of their strong light emission properties and their ability to be modified with a variety of functional groups for the detection of different analytes. Here, we investigate the use of conjugated carboxylated graphene quantum dots (CGQDs) for the detection of Escherichia coli using a biosensing assay that focuses on measuring changes in fluorescence intensity. We have further developed this assay into a novel, compact, field-deployable biosensor focused on rapidly measuring changes in absorbance to determine E. coli concentrations. Our CGQDs were conjugated with cecropin P1, a naturally produced antibacterial peptide that facilitates the attachment of CGQDs to E. coli cells; to our knowledge, this is the first instance of cecropin P1 being used as a biorecognition element for quantum dot biosensors. As such, we confirm the structural modification of these conjugated CGQDs in addition to analyzing their optical characteristics. Our findings have the potential to be used in situations where rapid, reliable detection of bacteria in liquids, such as drinking water, is required, especially given the low range of E. coli concentrations (103 to 106 CFU/mL) within which our two biosensing assays have collectively been shown to function.
Collapse
Affiliation(s)
- Jonathan A. Bruce
- Taipei American School, 800 Chung Shan North Road, Section
6, Taipei 11152, Taiwan
| | - Jude C. Clapper
- Taipei American School, 800 Chung Shan North Road, Section
6, Taipei 11152, Taiwan
| |
Collapse
|
10
|
Siller IG, Preuss JA, Urmann K, Hoffmann MR, Scheper T, Bahnemann J. 3D-Printed Flow Cells for Aptamer-Based Impedimetric Detection of E. coli Crooks Strain. SENSORS 2020; 20:s20164421. [PMID: 32784793 PMCID: PMC7472219 DOI: 10.3390/s20164421] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 01/16/2023]
Abstract
Electrochemical spectroscopy enables rapid, sensitive, and label-free analyte detection without the need of extensive and laborious labeling procedures and sample preparation. In addition, with the emergence of commercially available screen-printed electrodes (SPEs), a valuable, disposable alternative to costly bulk electrodes for electrochemical (bio-)sensor applications was established in recent years. However, applications with bare SPEs are limited and many applications demand additional/supporting structures or flow cells. Here, high-resolution 3D printing technology presents an ideal tool for the rapid and flexible fabrication of tailor-made, experiment-specific systems. In this work, flow cells for SPE-based electrochemical (bio-)sensor applications were designed and 3D printed. The successful implementation was demonstrated in an aptamer-based impedimetric biosensor approach for the detection of Escherichia coli (E. coli) Crooks strain as a proof of concept. Moreover, further developments towards a 3D-printed microfluidic flow cell with an integrated micromixer also illustrate the great potential of high-resolution 3D printing technology to enable homogeneous mixing of reagents or sample solutions in (bio-)sensor applications.
Collapse
Affiliation(s)
- Ina G. Siller
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany; (I.G.S.); (J.-A.P.); (T.S)
| | - John-Alexander Preuss
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany; (I.G.S.); (J.-A.P.); (T.S)
| | - Katharina Urmann
- Department of Environmental Science and Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA; (K.U.); (M.R.H.)
| | - Michael R. Hoffmann
- Department of Environmental Science and Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA; (K.U.); (M.R.H.)
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany; (I.G.S.); (J.-A.P.); (T.S)
| | - Janina Bahnemann
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany; (I.G.S.); (J.-A.P.); (T.S)
- Correspondence: ; Tel.: +49-511-762-2568
| |
Collapse
|
11
|
Li T, Ou G, Chen X, Li Z, Hu R, Li Y, Yang Y, Liu M. Naked-eye based point-of-care detection of E.coli O157: H7 by a signal-amplified microfluidic aptasensor. Anal Chim Acta 2020; 1130:20-28. [PMID: 32892935 DOI: 10.1016/j.aca.2020.07.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/14/2020] [Indexed: 02/02/2023]
Abstract
Fast and sensitive detection of E.coli O157: H7 is significantly essential for clinical management as well as for transmission prevention during disease outbreaks. Though many types of detection strategies have been implemented for measuring E.coli O157: H7, most of them still rely on complex instruments or tedious/laborious setups, which restrict their applications in resource-limited scenarios. Herein, we introduce an eye-based microfluidic aptasensor (EA-Sensor) for fast detection of E.coli O157: H7 without the assist of any instruments. We demonstrate the perfect coupling of aptamer sensing, hybridization chain reaction (HCR)-amplification and a distance-based visualized readout to quantitatively determine the pathogen concentration. We first used gel-electrophoresis assay to evaluate the system and the results proved that E.coli O157: H7 was well recognized by the aptamer and HCR could increase the signal by about 100 folds. In addition, the Aptamer specificity and signal-amplification ability were verified on the EA-Sensor for sensing E.coli O157: H7 by naked eyes. Furthermore, we demonstrated that E.coli O157: H7 in milk could be accurately and conveniently measured with good performance. With the benefits of operation integration and strategy integration, our EA-Sensor shows advantages of high specificity, easy operation, efficient amplification and visualized readout, which offers a favorable point-of-care tool for E.coli O157: H7 or other pathogen detection in resource-constrained settings.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Gaozhi Ou
- School of Sports, China University of Geosciences, Wuhan, 430074, China
| | - Xuliang Chen
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zheyu Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China.
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| |
Collapse
|
12
|
Yang T, Yang X, Guo X, Fu S, Zheng J, Chen S, Qin X, Wang Z, Zhang D, Man C, Jiang Y. A novel fluorometric aptasensor based on carbon nanocomposite for sensitive detection of Escherichia coli O157:H7 in milk. J Dairy Sci 2020; 103:7879-7889. [PMID: 32600757 DOI: 10.3168/jds.2020-18344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Escherichia coli O157:H7 is an extremely serious foodborne pathogen accounting for a vast number of hospitalizations. In this system, a simple, rapid, and safe compound method was developed based on carbonyl iron powder (CIP) and multiwalled carbon nanotubes (MWCNT). Then, the CIP@MWCNT-based aptasensor was constructed by strong π-stacking between nanocomposite and aptamer, single-strand DNA, causing fluorescent quenching of the dye-labeled aptamer. The restoration of dye fluorescence could be achieved when aptamer came off the surface of the CIP@MWCNT nanocomposite due to the presence of target bacteria. To the best of our knowledge, this fabrication of magnetic carbon nanotubes without irritating and corrosive reagents is described for the first time. The sensing platform was also an improvement on the conventional formation of the aptasensor between carbon materials and DNA aptamer. The nanocomposite was verified by diverse characterization of zeta potential, Fourier-transform infrared spectroscopy, transmission electron microscopy, and energy dispersive x-ray analysis. The CIP@MWCNT-based aptasensor was an effective nanoplatform for quantitative detection of E. coli O157:H7, and was measured to have high specificity, good reproducibility, and strong stability. The aptasensor's capacity to quantify E. coli O157:H7 was as low as 7.15 × 103 cfu/mL in pure culture. The detection limit of E. coli O157:H7 was 3.15 × 102 cfu/mL in contaminated milk after 1 h of pre-incubation. Hence, the developed assay is a new possibility for effective synthesis of nanocomposites and sensitive tests of foodborne pathogens in the dairy industry.
Collapse
Affiliation(s)
- Tao Yang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xinyan Yang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xiaojie Guo
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Shiqian Fu
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Jiapeng Zheng
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Sihan Chen
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xue Qin
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Zhenghui Wang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Dongyan Zhang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
13
|
Abstract
Aptasensors form a class of biosensors that function on the basis of a biological recognition. An aptasensor is advantageous because it incorporates a unique biologic recognition element, i.e., an aptamer, coupled to a transducer to convert a biological interaction to readable signals that can be easily processed and reported. In such biosensors, the specificity of aptamers is comparable to and sometimes even better than that of antibodies. Using the SELEX technique, aptamers with high specificity and affinity to various targets can be isolated from large pools of different oligonucleotides. Nowadays, new modifications of the SELEX technique and, as a result, easy generation and synthesis of aptamers have led to the wide application of these materials as biological receptors in biosensors. In this regard, aptamers promise a bright future. In the present research a brief account is initially provided of the recent developments in aptasensors for various targets. Then, immobilization methods, design strategies, current limitations and future directions are discussed for aptasensors.
Collapse
Affiliation(s)
- Laleh Hosseinzadeh
- Department of Chemistry, Dehloran Branch, Islamic Azad University, Dehloran, Iran
| | | |
Collapse
|
14
|
Sai-Anand G, Sivanesan A, Benzigar MR, Singh G, Gopalan AI, Baskar AV, Ilbeygi H, Ramadass K, Kambala V, Vinu A. Recent Progress on the Sensing of Pathogenic Bacteria Using Advanced Nanostructures. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180280] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gopalan Sai-Anand
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Arumugam Sivanesan
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- Metrohm Australia, 56 Buffalo Road, Gladesville, NSW 2111, Australia
| | - Mercy R Benzigar
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Anantha-Iyengar Gopalan
- Research Institute of Advanced Energy Technology, Kyungpook National University, Daegu 41566, Korea
| | - Arun Vijay Baskar
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Hamid Ilbeygi
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Venkata Kambala
- Hudson Marketing Pty Ltd, Level 2/131 Macquarie St, Sydney NSW 2000, Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
15
|
Kumar S, Jain S, Dilbaghi N, Ahluwalia AS, Hassan AA, Kim KH. Advanced Selection Methodologies for DNAzymes in Sensing and Healthcare Applications. Trends Biochem Sci 2018; 44:190-213. [PMID: 30559045 DOI: 10.1016/j.tibs.2018.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
DNAzymes have been widely explored owing to their excellent catalytic activity in a broad range of applications, notably in sensing and biomedical devices. These newly discovered applications have built high hopes for designing novel catalytic DNAzymes. However, the selection of efficient DNAzymes is a challenging process but one that is of crucial importance. Initially, systemic evolution of ligands by exponential enrichment (SELEX) was a labor-intensive and time-consuming process, but recent advances have accelerated the automated generation of DNAzyme molecules. This review summarizes recent advances in SELEX that improve the affinity and specificity of DNAzymes. The thriving generation of new DNAzymes is expected to open the door to several healthcare applications. Therefore, a significant portion of this review is dedicated to various biological applications of DNAzymes, such as sensing, therapeutics, and nanodevices. In addition, discussion is further extended to the barriers encountered for the real-life application of these DNAzymes to provide a foundation for future research.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India; Department of Civil Engineering, College of Engineering, University of Nebraska at Lincoln, PO Box 886105, Lincoln, NE 68588-6105, USA.
| | - Shikha Jain
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India
| | | | - Ashraf Aly Hassan
- Department of Civil Engineering, College of Engineering, University of Nebraska at Lincoln, PO Box 886105, Lincoln, NE 68588-6105, USA
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
16
|
Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Wang L, Wang R, Wei H, Li Y. Selection of aptamers against pathogenic bacteria and their diagnostics application. World J Microbiol Biotechnol 2018; 34:149. [PMID: 30220026 DOI: 10.1007/s11274-018-2528-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
Aptamers are short nucleotide sequences which can specifically bind to a variety of targets with high affinity. They are identified and selected via systematic evolution of ligands by exponential enrichment (SELEX). Compared to antibodies, aptamers offer several advantages including easy labeling, high stability and lower cost. Those advantages make it possible to be a potential for use as a recognition probe to replace antibody in the diagnostic field. This article is intended to provide a comprehensive review, which is focused on systemizing recent advancements concerning SELEX procedures, with special emphasis on the key steps in SELEX procedures. The principles of various aptamer-based detections of pathogenic bacteria and their application are discussed in detail, including colorimetric detection, fluorescence detection, electrochemical detection, lateral flow strip test, mass sensitive detection and PCR-based aptasensor. By discussing recent research and future trends based on many excellent publications and reviews, we attempt to give the readers a comprehensive view in the field of aptamer selection against pathogenic bacteria and their diagnostics application. Authors hope that this review will promote lively and valuable discussions in order to generate new ideas and approaches towards the development of aptamer-based methods for application in pathogenic bacteria diagnosis.
Collapse
Affiliation(s)
- Lijun Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.,Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ronghui Wang
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Hua Wei
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Yanbin Li
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA. .,Center of Excellence for Poultry Science, University of Arkansas, 203 Engineering Hall, Fayetteville, AR, 72701, USA.
| |
Collapse
|
18
|
Chen R, Huang X, Li J, Shan S, Lai W, Xiong Y. A novel fluorescence immunoassay for the sensitive detection of Escherichia coli O157:H7 in milk based on catalase-mediated fluorescence quenching of CdTe quantum dots. Anal Chim Acta 2016; 947:50-57. [DOI: 10.1016/j.aca.2016.10.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
|
19
|
Jin B, Wang S, Lin M, Jin Y, Zhang S, Cui X, Gong Y, Li A, Xu F, Lu TJ. Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosens Bioelectron 2016; 90:525-533. [PMID: 27825886 DOI: 10.1016/j.bios.2016.10.029] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/24/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
Pathogenic bacteria cause serious harm to human health, which calls for the development of advanced detection methods. Herein, we developed a novel detection platform based on fluorescence resonance energy transfer (FRET) for rapid, ultrasensitive and specific bacteria detection, where gold nanoparticles (AuNPs, acceptor) were conjugated with aptamers while upconversion nanoparticles (UCNPs, donor) were functionalized with corresponding complementary DNA (cDNA). The spectral overlap between UCNPs fluorescence emission and AuNPs absorption enables the occurrence of FRET when hybridizing the targeted aptamer and cDNA, causing upconversion fluorescence quenching. In the presence of target bacteria, the aptamers preferentially bind to bacteria forming a three-dimensional structure and thereby dissociate UCNPs-cDNA from AuNPs-aptamers, resulting in the recovery of upconversion fluorescence. Using the UCNPs based FRET aptasensor, we successfully detected Escherichia coli ATCC 8739 (as a model analyte) with a detection range of 5-106cfu/mL and detection limit of 3cfu/mL. The aptasensor was further used to detect E. coli in real food and water samples (e.g., tap/pond water, milk) within 20min. The novel UCNPs based FRET aptasensor could be used to detect a broad range of targets from whole cells to metal ions by using different aptamer sequences, holding great potential in environmental monitoring, medical diagnostics and food safety analysis.
Collapse
Affiliation(s)
- Birui Jin
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shurui Wang
- MOE Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Ying Jin
- Key Laboratory of Space Nutrition and Food Engineering, China Astronauts Research and Training Center, Beijing 100094, PR China
| | - Shujing Zhang
- Key Laboratory of Space Nutrition and Food Engineering, China Astronauts Research and Training Center, Beijing 100094, PR China
| | - Xingye Cui
- MOE Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yan Gong
- MOE Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; MOE Key Laboratory for Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
20
|
Guler E, Bozokalfa G, Demir B, Gumus ZP, Guler B, Aldemir E, Timur S, Coskunol H. An aptamer folding-based sensory platform decorated with nanoparticles for simple cocaine testing. Drug Test Anal 2016; 9:578-587. [PMID: 27336666 DOI: 10.1002/dta.1992] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 01/08/2023]
Abstract
The consumption of illicit drugs such as cannabis, cocaine, and amphetamines is still a major health and social problem, creating an abuse in adults especially. Novel techniques which estimate the drug of abuse are needed for the detection of newly revealed psychoactive drugs. Herein, we have constructed a combinatorial platform by using quantum dots (QDs) and gold nanoparticles (AuNPs) as well as a functional aptamer which selectively recognizes cocaine and its metabolite benzoylecgonine (BE). We have called it an aptamer folding-based sensory device (AFSD). For the fabrication of AFSD, QDs were initially immobilized onto the poly-L-lysine coated μ-well surfaces. Then, the AuNP-aptamer conjugates were bound to the QDs. The addition of cocaine or BE caused a change in the aptamer structure which induced the close interaction of AuNPs with the QDs. Hence, quenching of the fluorescence of QDs was observed depending on the analyte amount. The linearity of cocaine and BE was 1.0-10 nM and 1.0-25 μM, respectively. Moreover, the limits of detection for cocaine and BE were calculated as 0.138 nM and 1.66 μM. The selectivity was tested by using different interfering substances (methamphetamine, bovine serum albumin, codeine, and 3-acetamidophenol). To investigate the use of AFSD in artificial urine matrix, cocaine/BE spiked samples were applied. Also, confirmatory analyses by using high performance liquid chromatography were performed. It is shown that AFSD has a good potential for testing the cocaine abuse and can be easily adapted for detection of various addictive drugs by changing the aptamer according to desired analytes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Emine Guler
- Ege University Faculty of Science, Biochemistry Department, 35100, Bornova, Izmir, Turkey.,Ege University, Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey
| | - Guliz Bozokalfa
- Ege University Faculty of Science, Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Bilal Demir
- Ege University Faculty of Science, Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Zinar Pinar Gumus
- Ege University, Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey
| | - Bahar Guler
- Ege University Faculty of Science, Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Ebru Aldemir
- Ege University, Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey
| | - Suna Timur
- Ege University Faculty of Science, Biochemistry Department, 35100, Bornova, Izmir, Turkey.,Ege University, Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey
| | - Hakan Coskunol
- Ege University, Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey.,Ege LS, Cigli, 35620, Izmir, Turkey
| |
Collapse
|