1
|
Hybrid composites of epoxidized polyurethane and novolac resins cured by poly(amidoamine) dendrimer-grafted graphene oxide. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03785-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
2
|
Patel V, Patel P, Patel JV, Patel PM. Dendrimer as a versatile platform for biomedical application: A review. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
3
|
|
4
|
Pashaei-Sarnaghi R, Najafi F, Taghavi-Kahagh A, Salami-Kalajahi M, Roghani-Mamaqani H. Synthesis, photocrosslinking, and self-assembly of coumarin-anchored poly(amidoamine) dendrimer for smart drug delivery system. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Izadi M, Mardani H, Roghani‐Mamaqani H, Salami‐Kalajahi M, Khezri K. Hyperbranched Poly(amidoamine)‐Grafted Graphene Oxide as a Multifunctional Curing Agent for Epoxy‐Terminated Polyurethane Composites. ChemistrySelect 2021. [DOI: 10.1002/slct.202004307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohammadreza Izadi
- Faculty of Polymer Engineering Sahand University of Technology P.O. Box 51335–1996 Tabriz Iran
| | - Hanieh Mardani
- Faculty of Polymer Engineering Sahand University of Technology P.O. Box 51335–1996 Tabriz Iran
| | - Hossein Roghani‐Mamaqani
- Faculty of Polymer Engineering Sahand University of Technology P.O. Box 51335–1996 Tabriz Iran
- Institute of Polymeric Materials Sahand University of Technology P.O. Box 51335–1996 Tabriz Iran
| | - Mehdi Salami‐Kalajahi
- Faculty of Polymer Engineering Sahand University of Technology P.O. Box 51335–1996 Tabriz Iran
- Institute of Polymeric Materials Sahand University of Technology P.O. Box 51335–1996 Tabriz Iran
| | - Khezrollah Khezri
- School of Chemistry University College of Science, University of Tehran P.O. Box 14155–6455 Tehran Iran
| |
Collapse
|
6
|
Preparation of a three-dimensional modified graphene oxide via RAFT polymerization for reinforcing cement composites. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Razavi B, Abbaszadeh R, Salami-Kalajahi M, Roghani-Mamaqani H. Multi-responsive poly(amidoamine)-initiated dendritic-star supramolecular structures containing UV cross-linkable coumarin groups for smart drug delivery. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114138] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
A review on synthesis and applications of dendrimers. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02053-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Shokri AA, Talebi S, Salami-Kalajahi M. Polybutadiene Rubber/Graphene Nanocomposites Prepared via In Situ Coordination Polymerization Using the Neodymium-Based Ziegler–Natta Catalyst. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ahmad-ali Shokri
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, 5166614711 Tabriz, Iran
| | - Saeid Talebi
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, 5331811111 Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, 5166614711 Tabriz, Iran
| |
Collapse
|
10
|
Golshan M, Rostami-Tapeh-Esmail E, Salami-Kalajahi M, Roghani-Mamaqani H. A review on synthesis, photophysical properties, and applications of dendrimers with perylene core. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109933] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Najafi F, Salami-Kalajahi M, Roghani-Mamaqani H. Synthesis of amphiphilic Janus dendrimer and its application in improvement of hydrophobic drugs solubility in aqueous media. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109804] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Najafi F, Salami-Kalajahi M, Roghani-Mamaqani H, Kahaie-Khosrowshahi A. A comparative study on solubility improvement of tetracycline and dexamethasone by poly(propylene imine) and polyamidoamine dendrimers: An insight into cytotoxicity and cell proliferation. J Biomed Mater Res A 2019; 108:485-495. [PMID: 31682311 DOI: 10.1002/jbm.a.36830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/20/2023]
Abstract
Many of new chemical discovered in pharmaceutical industry are hydrophobic compounds. Various techniques have been used to overcome solubility problems of hydrophobic drugs in aqueous media. In the meantime, dendrimers have been considered for sustainability, nanoscale size, high carry capacity, tunable terminal functional groups in terms of drug delivery and solubility. In this work, we have synthesized poly(propylene imine) (PPI) dendrimer up to fifth generation using reduction of nitrile groups after Michael addition and also, polyamidoamine (PAMAM) dendrimer up to fourth generation using Michael addition and amidation reactions. fourth and fifth generations of PPI dendrimer and fourth and third generations of PAMAM dendrimer in different concentrations were used to evaluate the solubility of two hydrophobic drugs (tetracycline and dexamethasone). Furthermore, cytotoxicity of dendrimers and dendrimers/drugs hybrids was studied. The results showed that with increasing concentrations and also the generation of dendrimers, the solubility of these two hydrophobic drugs was increased. Cytotoxicity study through MTT assay against Osteoblast-like cell line (MG-63 cells) showed that dendrimers were relatively cytotoxic where adding dexamethasone caused higher cytotoxicity. However, tetracycline showed no significant effect on cytotoxicity whereas prevented cell proliferation.
Collapse
Affiliation(s)
- Faezeh Najafi
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran.,Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran.,Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran.,Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Amir Kahaie-Khosrowshahi
- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran.,Tissue Engineering and Stem cells Research Center, Sahand University of Technology, Tabriz, Iran.,Tissue Engineering and Stem cells Research Center, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
13
|
Eskandari P, Abousalman-Rezvani Z, Roghani-Mamaqani H, Salami-Kalajahi M, Mardani H. Polymer grafting on graphene layers by controlled radical polymerization. Adv Colloid Interface Sci 2019; 273:102021. [PMID: 31473461 DOI: 10.1016/j.cis.2019.102021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 11/27/2022]
Abstract
In situ controlled radical polymerization (CRP) is considered as an important approach to graft polymer brushes with controlled grafting density, functionality, and thickness on graphene layers. Polymers are tethered with chain end or through its backbone to the surface or edge of graphene layers with two in situ polymerization methods of "grafting from" and "grafting through" and also a method based on coupling reactions known as "grafting to". The "grafting from" method relies on the propagation of polymer chains from the surface- or edge-attached initiators. The "grafting through" method is based on incorporation of double bond-modified graphene layers into polymer chains through the propagation reaction. The "grafting to" technique involves attachment of pre-fabricated polymer chains to the graphene substrate. Here, physical and chemical attachment approaches are also considered in polymer-modification of graphene layers. Combination of CRP mechanisms of reversible activation, degenerative (exchange) chain transfer, atom transfer, and reversible chain transfer with various kinds of grafting reactions makes it possible to selectively functionalize graphene layers. The main aim of this review is assessment of the recent advances in the field of preparation of polymer-grafted graphene substrates with well-defined polymers of controlled molecular weight, thickness, and polydispersity index. Study of the opportunities and challenges for the future works in controlling of grafting density, site-selectivity in grafting, and various topologies of the brushes with potential applications in stimuli-responsive surfaces, polymer composites, Pickering emulsions, coating technologies, and sensors is also considered.
Collapse
Affiliation(s)
- Parvaneh Eskandari
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Zahra Abousalman-Rezvani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Hanieh Mardani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| |
Collapse
|
14
|
Stimuli-chromism of photoswitches in smart polymers: Recent advances and applications as chemosensors. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101149] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Jin T, Yin H, Easton CD, Seeber A, Hao X, Huang C, Zeng R. New strategy of improving the dispersibility of acrylamide-functionalized graphene oxide in aqueous solution by RAFT copolymerization of acrylamide and acrylic acid. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Najafi F, Salami-Kalajahi M, Roghani-Mamaqani H, Kahaie-Khosrowshahi A. Effect of grafting ratio of poly(propylene imine) dendrimer onto gold nanoparticles on the properties of colloidal hybrids, their DOX loading and release behavior and cytotoxicity. Colloids Surf B Biointerfaces 2019; 178:500-507. [DOI: 10.1016/j.colsurfb.2019.03.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
|
17
|
Nikravan G, Haddadi-Asl V, Salami-Kalajahi M. Stimuli-responsive DOX release behavior of cross-linked poly(acrylic acid) nanoparticles. E-POLYMERS 2019. [DOI: 10.1515/epoly-2019-0021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractCross-linked poly(acrylic acid) nanoparticles were synthesized via distillation precipitation polymerization of acrylic acid and ethylene glycol dimethacrylate withdifferent molar ratios. Spherical nanoparticles with diameters between 75 and 122 nm were synthesized and exhibited temperature and pH-responsive behaviors. However, this behavior was less pronounced for samples with higher cross-linking degrees. The potential of all nanoparticles as carriers for controlled release of doxorubicin (DOX) anti-cancer drug was examined at pH values of 1.2, 5.3 and 7.4. An obvious alleviation in burst release behavior and the amount of cumulative drug release was seen for all nanoparticles as the pH of the medium and the cross-linking degree of nanoparticle increased. Also kinetics of drug release was studied using mathematical models of zero-order, first-order, Higuchi, Korsmeyer-Peppas and Hixson-Crowell, where Higuchi and Korsmeyer-Peppas models best defined the kinetics of drug release.
Collapse
Affiliation(s)
- Goolia Nikravan
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| |
Collapse
|
18
|
Pirayesh A, Salami-Kalajahi M, Roghani-Mamaqani H, Mazloomi-Rezvani M. Synthesis and characterization of bis(oxiranylmethyl)sulfanes as new epoxide-terminated polysulfide prepolymers and their use in synthesis of new amine-cured polysulfide polymers. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.22117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Amin Pirayesh
- Department of Polymer Engineering; Sahand University of Technology; Tabriz Iran
- Institute of Polymeric Materials; Sahand University of Technology; Tabriz Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering; Sahand University of Technology; Tabriz Iran
- Institute of Polymeric Materials; Sahand University of Technology; Tabriz Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering; Sahand University of Technology; Tabriz Iran
- Institute of Polymeric Materials; Sahand University of Technology; Tabriz Iran
| | - Mahsa Mazloomi-Rezvani
- Department of Polymer Engineering; Sahand University of Technology; Tabriz Iran
- Institute of Polymeric Materials; Sahand University of Technology; Tabriz Iran
| |
Collapse
|
19
|
Pourhosseini-Pakdel Z, Roghani-Mamaqani H, Azimi R, Gholipour-Mahmoudalilou M. Multifunctional curing component for epoxidized novolac resin by grafting poly (amidoamine) on carbon nanotubes using a divergent method. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering; Sahand University of Technology; PO Box 51335-1996 Tabriz Iran
| | - Reza Azimi
- Department of Polymer Engineering; Sahand University of Technology; PO Box 51335-1996 Tabriz Iran
| | | |
Collapse
|
20
|
Nikravan G, Haddadi-Asl V, Salami-Kalajahi M. Synthesis of dual temperature – and pH-responsive yolk-shell nanoparticles by conventional etching and new deswelling approaches: DOX release behavior. Colloids Surf B Biointerfaces 2018; 165:1-8. [DOI: 10.1016/j.colsurfb.2018.02.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 01/21/2023]
|
21
|
Stimuli-responsive behavior of smart copolymers-grafted magnetic nanoparticles: Effect of sequence of copolymer blocks. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Ebrahimi H, Roghani-Mamaqani H, Salami-Kalajahi M. Incorporation of graphene oxide nanolayers into thermally stable hybrid composites of thermosetting resins by combination of curing and sol–gel reactions. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2307-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Nikravan G, Haddadi-Asl V, Salami-Kalajahi M. Synthesis of pH-responsive magnetic yolk-shell nanoparticles: A comparison between conventional etching and new deswelling approaches. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4272] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Goolia Nikravan
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; PO Box 15875-4413 Tehran Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; PO Box 15875-4413 Tehran Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering; Sahand University of Technology; PO Box 51335-1996 Tabriz Iran
- Institute of Polymeric Materials, Sahand University of Technology; PO Box 51335-1996 Tabriz Iran
| |
Collapse
|
24
|
Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H. Synthesis of dual thermo- and pH-sensitive poly(N
-isopropylacrylamide-co
-acrylic acid)-grafted cellulose nanocrystals by reversible addition-fragmentation chain transfer polymerization. J Biomed Mater Res A 2017; 106:231-243. [DOI: 10.1002/jbm.a.36230] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/24/2017] [Accepted: 08/30/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Elnaz Zeinali
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology, P.O. Box; Tehran 15875-4413 Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology, P.O. Box; Tehran 15875-4413 Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering; Sahand University of Technology, P.O. Box; Tabriz 51335-1996 Iran
| |
Collapse
|
25
|
Mazloomi‐Rezvani M, Salami‐Kalajahi M, Roghani‐Mamaqani H, Pirayesh A. Effect of surface modification with various thiol compounds on colloidal stability of gold nanoparticles. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4079] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mahsa Mazloomi‐Rezvani
- Department of Polymer Engineering, and Institute of Polymeric MaterialsSahand University of Technology PO Box 51335‐1996 Tabriz Iran
| | - Mehdi Salami‐Kalajahi
- Department of Polymer Engineering, and Institute of Polymeric MaterialsSahand University of Technology PO Box 51335‐1996 Tabriz Iran
| | - Hossein Roghani‐Mamaqani
- Department of Polymer Engineering, and Institute of Polymeric MaterialsSahand University of Technology PO Box 51335‐1996 Tabriz Iran
| | - Amin Pirayesh
- Department of Polymer Engineering, and Institute of Polymeric MaterialsSahand University of Technology PO Box 51335‐1996 Tabriz Iran
| |
Collapse
|
26
|
Modarresi-Saryazdi SM, Haddadi-Asl V, Salami-Kalajahi M. N,N'-methylenebis(acrylamide)-crosslinked poly(acrylic acid) particles as doxorubicin carriers: A comparison between release behavior of physically loaded drug and conjugated drug via acid-labile hydrazone linkage. J Biomed Mater Res A 2017; 106:342-348. [DOI: 10.1002/jbm.a.36240] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/03/2017] [Accepted: 09/14/2017] [Indexed: 12/24/2022]
Affiliation(s)
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran P.O. Box 15875-4413 Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering; Sahand University of Technology; Tabriz P.O. Box 51335-1996 Iran
- Institute of Polymeric Materials; Sahand University of Technology; Tabriz P.O. Box 51335-1996 Iran
| |
Collapse
|
27
|
Azimi R, Roghani-Mamaqani H, Gholipour-Mahmoudalilou M. Grafting poly (amidoamine) dendrimer-modified silica nanoparticles to graphene oxide for preparation of a composite and curing agent for epoxy resin. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.08.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Golshan M, Salami-Kalajahi M, Mirshekarpour M, Roghani-Mamaqani H, Mohammadi M. Synthesis and characterization of poly(propylene imine)-dendrimer-grafted gold nanoparticles as nanocarriers of doxorubicin. Colloids Surf B Biointerfaces 2017; 155:257-265. [PMID: 28433942 DOI: 10.1016/j.colsurfb.2017.04.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/20/2017] [Accepted: 04/11/2017] [Indexed: 11/18/2022]
Abstract
The aim of current work is synthesis 4th-generation-poly(propylene imine) (PPI)-dendrimer modified gold nanoparticles (Au-G4A) as nanocarriers for doxorubicin (DOX) and studying in vitro drug release kinetics from nanocarriers into different media. Accordingly, AuNPs were synthesized by reduction of chloroauric acid (HAuCl4) aqueous solution with trisodium citrate and modified with cysteamine to obtain amine-functionalized (Au-NH2) nanoparticles. Au-NH2 nanoparticles were used as multifunctional cores and participated in Michael addition of acrylonitrile and reduction process by lithium aluminum hydride (LAH) to synthesize Au-G4A nanoparticles. Also, peripheral primary amine groups of Au-G4A were conjugated with folic acid (FA) (Au-G4F) to study the bioconjugation effect on drug release behavior of nanostructures. Ultraviolet spectroscopy (UV-vis), atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA) were used to approve the synthesis of different nanostructures. Finally, Au-G4A and Au-G4F samples were loaded with DOX and exposed to environments with different pH values to examine the release properties of nanostructures. Also, drug release kinetics was investigated by fitting of experimental data with different release models. As a result, synthesized dendritic structures showed Higuchi and Korsmeyer-Peppas models release behavior due to better solubility of drug in release media with respect to dendrimer cavities and drug release through polymeric matrix respectively.
Collapse
Affiliation(s)
- Marzieh Golshan
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Mina Mirshekarpour
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Maryam Mohammadi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| |
Collapse
|
29
|
Golshan M, Salami‐Kalajahi M, Roghani‐Mamaqani H, Mohammadi M. Synthesis of poly(propylene imine) dendrimers via homogeneous reduction process using lithium aluminium hydride: Bioconjugation with folic acid and doxorubicin release kinetics. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3789] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Marzieh Golshan
- Department of Polymer Engineering and Institute of Polymeric MaterialsSahand University of Technology PO Box 51335‐1996 Tabriz Iran
| | - Mehdi Salami‐Kalajahi
- Department of Polymer Engineering and Institute of Polymeric MaterialsSahand University of Technology PO Box 51335‐1996 Tabriz Iran
| | - Hossein Roghani‐Mamaqani
- Department of Polymer Engineering and Institute of Polymeric MaterialsSahand University of Technology PO Box 51335‐1996 Tabriz Iran
| | - Maryam Mohammadi
- Department of Polymer Engineering and Institute of Polymeric MaterialsSahand University of Technology PO Box 51335‐1996 Tabriz Iran
| |
Collapse
|
30
|
Chen S, Bian Q, Wang P, Zheng X, Lv L, Dang Z, Wang G. Photo, pH and redox multi-responsive nanogels for drug delivery and fluorescence cell imaging. Polym Chem 2017; 8:6150-6157. [DOI: 10.1039/c7py01424d] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
A light, pH and redox triple-responsive spiropyran-based nanogel is prepared and applied for the efficient delivery of anticancer drugs and fluorescence cell imaging for the strong emission of merocyanine photoisomers.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
- Department of Polymer Science and Engineering
| | - Qing Bian
- Department of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Panjun Wang
- Department of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Xuewei Zheng
- Department of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Le Lv
- Department of Biological Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Zhimin Dang
- Department of Polymer Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Guojie Wang
- Department of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| |
Collapse
|
31
|
Banaei M, Salami-Kalajahi M. A “Grafting to” Approach to Synthesize Low Cytotoxic Poly(aminoamide)-Dendrimer-grafted Fe3O4Magnetic Nanoparticles. ADVANCES IN POLYMER TECHNOLOGY 2016. [DOI: 10.1002/adv.21741] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Masoud Banaei
- Department of Polymer Engineering; Sahand University of Technology; PO Box 51335-1996 Tabriz Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering; Sahand University of Technology; PO Box 51335-1996 Tabriz Iran
- Institute of Polymeric Materials; Sahand University of Technology; PO Box 51335-1996 Tabriz Iran
| |
Collapse
|