1
|
Yang X, Meng D, Jiang N, Wang C, Zhang J, Hu Y, Lun J, Jia R, Zhang X, Sun W. Curcumin-loaded pH-sensitive carboxymethyl chitosan nanoparticles for the treatment of liver cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:628-656. [PMID: 38284334 DOI: 10.1080/09205063.2024.2304949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/10/2023] [Indexed: 01/30/2024]
Abstract
In this study, the pH-responsive API-CMCS-SA (ACS) polymeric nanoparticles (NPs) based on 1-(3-amino-propyl) imidazole (API), stearic acid (SA), and carboxymethyl chitosan (CMCS) were fabricated for the effective transport of curcumin (CUR) in liver cancer. CUR-ACS-NPs with various degrees of substitution (DS) were employed to prepare through ultrasonic dispersion method. The effect of different DS on NPs formation was discussed. The obtained CUR-ACS-NPs (DSSA=12.4%) had high encapsulation rate (more than 85%) and uniform particle size (186.2 ± 1.42 nm). The CUR-ACS-NPs showed better stability than the other groups. Drug release from the CUR-ACS-NPs was pH-dependent, and more than 90% or 65% of CUR was released in 48 h in weakly acid medium (pH 5.0 or 6.0, respectively). Additionally, the CUR-ACS-NPs increased the intracellular accumulation of CUR and demonstrated high anticancer effect on HepG2 cells compared with the other groups. CUR-ACS-NPs prolonged the retention time of the drug, and the area under the curve (AUC) increased significantly in vivo. The in vivo antitumor study further revealed that the CUR-ACS-NPs exhibited the capability of inhibiting tumor growth and lower systemic toxicity. Meanwhile, CUR, CUR-CS-NPs, and CUR-ACS-NPs could be detected in the evaluated organs, including tumor, liver, spleen, lung, heart, and kidney in distribution studies. Among them, CUR-ACS-NPs reached the maximum concentration at the tumor site, indicating the tumor-targeting properties. In short, the results suggested that CUR-ACS-NPs could act a prospective drug transport system for effective delivery of CUR in cancer treatment.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Dongdong Meng
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Ning Jiang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Chaoxing Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Jinbo Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Yanqiu Hu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Jiaming Lun
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Rui Jia
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Xueyun Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Weitong Sun
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi, Heilongjiang 154007, PR China
| |
Collapse
|
2
|
Khan RU, Yu H, Wang L, Teng L, Zain‐ul‐Abdin, Nazir A, Fahad S, Elshaarani T, Haq F, Shen D. Synthesis of amino‐cosubstituted polyorganophosphazenes and fabrication of their nanoparticles for anticancer drug delivery. J Appl Polym Sci 2020. [DOI: 10.1002/app.49424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rizwan Ullah Khan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Lisong Teng
- Oncological Surgery and Cancer Center, the First Affiliated HospitalZhejiang University Hangzhou People's Republic of China
| | - Zain‐ul‐Abdin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Ahsan Nazir
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Shah Fahad
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Tarig Elshaarani
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Fazal Haq
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| |
Collapse
|
3
|
Hsu W, Csaba N, Alexander C, Garcia‐Fuentes M. Polyphosphazenes for the delivery of biopharmaceuticals. J Appl Polym Sci 2020. [DOI: 10.1002/app.48688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei‐Hsin Hsu
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS)Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Division of Molecular Therapeutics and Formulation School of PharmacyUniversity of Nottingham UK
| | - Noemi Csaba
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS)Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation School of PharmacyUniversity of Nottingham UK
| | - Marcos Garcia‐Fuentes
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS)Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Chang S, Wang Y, Zhang T, Pu X, Zong L, Zhu H, Zhao L, Feng B. Redox-Responsive Disulfide Bond-Bridged mPEG-PBLA Prodrug Micelles for Enhanced Paclitaxel Biosafety and Antitumor Efficacy. Front Oncol 2019; 9:823. [PMID: 31508374 PMCID: PMC6719549 DOI: 10.3389/fonc.2019.00823] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/12/2019] [Indexed: 01/11/2023] Open
Abstract
The toxicity and side effects of traditional chemotherapeutic drugs are the main causes of chemotherapy failure. To improve the specificity and selectivity of chemotherapeutic drugs for tumor cells, a novel redox-sensitive polymer prodrug, polyethylene glycol-poly (β-benzyl-L-aspartate) (PEG-PBLA)-SS-paclitaxel (PPSP), was designed and synthesized in this study. The PPSP micelle was manufactured via high-speed dispersion stirring and dialysis. The particle size and zeta potential of this prodrug micelle were 63.77 ± 0.91 nm and −25.8 ± 3.24 mV, respectively. The micelles were uniformly distributed and presented a spherical morphology under a transmission electron microscope. In the tumor physiological environment, the particle size of the PPSP micelles and the release rate of paclitaxel (PTX) were significantly increased compared with those of mPEG-PBLA-CC-PTX (PPCP) micelles, reflecting the excellent redox-sensitive activity of the PPSP micelles. The inhibitory effect of PPSP on HepG2, MCF-7 and HL-7702 cell proliferation was investigated with MTT assays, and the results demonstrated that PPSP is superior to PTX with respect to the inhibition of two tumor cell types at different experimental concentration. Simultaneously PPSP has lower toxicity against HL-7702 cells then PTX and PPCP. Moreover, the blank micelle from mPEG-PBLA showed no obvious toxicity to the two tumor cells at different experimental concentrations. In summary, the redox-sensitive PPSP micelle significantly improved the biosafety and the anti-tumor activity of PTX.
Collapse
Affiliation(s)
- Sheng Chang
- College of Pharmacy, Jilin Medical University, Jilin, China
| | - Yanfei Wang
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Tianyi Zhang
- College of Pharmacy, Jilin Medical University, Jilin, China
| | - Xiaohui Pu
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Lanlan Zong
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Heyun Zhu
- College of Pharmacy, Jilin Medical University, Jilin, China
| | - Luling Zhao
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Bo Feng
- College of Pharmacy, Jilin Medical University, Jilin, China
| |
Collapse
|
5
|
Khan RU, Wang L, Yu H, Abdin ZU, Haq F, Haroon M, Naveed KUR, Elshaarani T, Fahad S, Ren S, Wang J. Synthesis of polyorganophosphazenes and fabrication of their blend microspheres and micro/nanofibers as drug delivery systems. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1581203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Rizwan Ullah Khan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Zain-Ul- Abdin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Fazal Haq
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Muhammad Haroon
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Kaleem-Ur-Rehman Naveed
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Tarig Elshaarani
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Shah Fahad
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Sicong Ren
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Jun Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
6
|
Pu X, Zhao L, Li J, Song R, Wang Y, Yu K, Hou X, Qiao P, Zong L, Chang S. A polymeric micelle with an endosomal pH-sensitivity for intracellular delivery and enhanced antitumor efficacy of hydroxycamptothecin. Acta Biomater 2019; 88:357-369. [PMID: 30822554 DOI: 10.1016/j.actbio.2019.02.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/15/2019] [Accepted: 02/25/2019] [Indexed: 12/31/2022]
Abstract
Amphiphilic poly(ethylene glycol)-imino-poly(benzyl-l-aspartate) (PIPA) and poly(ethylene glycol)-poly(benzyl-l-aspartate) (PPA) block copolymers were synthesized as pH-responsive and pH-nonresponsive copolymers, respectively. Polymer micelles were fabricated by the film dispersion method, and hydroxycamptothecin (HCPT) was physically encapsulated into the micelles. The average diameter of the HCPT-loaded PIPA micelles (PIPAH micelles) was approximately 230 nm, which was slightly smaller than that of the HCPT-loaded PPA micelles (PPAH micelles, approximately 260 nm). The drug-loading content and encapsulation efficiency of the PIPAH micelles (3.33% and 68.89%, respectively) were slightly higher than those of the PPAH micelles (2.90% and 59.68%, respectively). The PIPAH micelles exhibited better colloid stability, storage stability, and plasma stability than the PPAH micelles. Drug release from the PIPAH micelles with imino groups was pH dependent, and more than 75% or 65% of the loaded HCPT was released within 24 h in weakly acidic media (pH 5.0 or 6.0, respectively). An in vitro cell assay demonstrated that the pH-sensitive micelles exhibited potent suppression of cancer cell proliferation and little cytotoxicity on normal cells. Additionally, these micelles could be efficiently internalized by the tumor cells through macropinocytosis- and caveolin-mediated endocytotic pathways. HCPT-loaded micelles had longer circulation time than the HCPT solution in a pharmacokinetic study. In vivo antitumor experiments indicate that the PIPAH micelles had better antitumor efficacy than the pH-insensitive PPAH micelles and the HCPT solution. Therefore, the pH-responsive PIPAH micelles have great potential for high-efficiency delivery of HCPT. STATEMENT OF SIGNIFICANCE: In this study, a new type of pH-responsive amphiphilic copolymer, poly(ethylene glycol)-imino-poly(benzyl-l-aspartate) (PIPA) block copolymer, was synthesized. This copolymer had then self-assembled to form nanomicelles for tumor intracellular delivery of hydroxycamptothecin (HCPT) for the first time. In in vitro test, the PIPAH micelles exhibited adequate stability and pH-dependent drug release. To one's excitement, the PIPAH micelles exhibited better antitumor efficacy and biosafety than the pH-insensitive micelles (PPAH) and the HCPT solution in in vitro and in vivo antitumor experiments. Therefore, the pH-responsive micelles in this study have significant potential to be used for high-performance delivery of HCPT and potentially for the targeted delivery of other cancer therapeutic agents. The polymer designed in this study can be used as a carrier of poorly soluble drugs or other active ingredients.
Collapse
|
7
|
Khan RU, Wang L, Yu H, Zain-ul-Abdin, Akram M, Wu J, Haroon M, Ullah RS, Deng Z, Xia X. Recent progress in the synthesis of poly(organo)phosphazenes and their applications in tissue engineering and drug delivery. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Sobhani A, Rafienia M, Ahmadian M, Naimi-Jamal MR. Fabrication and Characterization of Polyphosphazene/Calcium Phosphate Scaffolds Containing Chitosan Microspheres for Sustained Release of Bone Morphogenetic Protein 2 in Bone Tissue Engineering. Tissue Eng Regen Med 2017; 14:525-538. [PMID: 30603507 PMCID: PMC6171629 DOI: 10.1007/s13770-017-0056-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 03/16/2017] [Accepted: 04/10/2017] [Indexed: 12/26/2022] Open
Abstract
Bone morphogenetic protein 2 has a major role in promoting bone regeneration in tissue engineering scaffolds. Growth factor release rate is a remaining crucial problem in these systems. The aim of this study was to fabricate and characterize a novel calcium phosphate/polyphosphazenes porous scaffold for the sustained release of bone morphogenetic protein 2 in bone tissue engineering. Polyphosphazenes were substituted with 2-dimethylaminoethanol and evaluated by GPC, NMR, and in vitro degradation. Calcium phosphate porous samples were prepared from hydroxyapatite nanoparticles and naphthalene using the sintering method at 1250 °C before being composited with poly(dimethylaminoethanol)phosphazenes containing chitosan microspheres loaded with bone morphogenetic protein 2. The characteristics and biodegradability of the product were evaluated by SEM, XRD, and in vitro degradation. Moreover, the release rate and mechanical properties of the scaffolds were investigated. The release behavior was found to be sustained since the scaffolds had been fabricated from polyphosphazenes with a low degradation rate. The release rates of the scaffolds were observed to increase with increasing chitosan microspheres content from 10 to 30%. The bioactivity of the scaffolds depended on the release rate of growth factor while bone morphogenetic protein 2 was able to induce an osteoblast proliferation. The results of cell adhesion and cell viability tests showed that scaffolds displayed a non-toxic behavior and western blot analyses confirmed that the scaffolds loaded with growth factor increased the osteogenic differentiation potential of cells when compared with scaffolds alone. These results demonstrate that these scaffolds can be successfully utilized in bone tissue engineering.
Collapse
Affiliation(s)
- Adnan Sobhani
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 8415683111 Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, 81744176 Iran
| | - Mehdi Ahmadian
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 8415683111 Iran
| | - Mohammad-Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684611314 Iran
| |
Collapse
|