1
|
Sanapalli BKR, Yele V, Singh MK, Thumbooru SN, Parvathaneni M, Karri VVSR. Human beta defensin-2 loaded PLGA nanoparticles impregnated in collagen-chitosan composite scaffold for the management of diabetic wounds. Biomed Pharmacother 2023; 161:114540. [PMID: 36934557 DOI: 10.1016/j.biopha.2023.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/26/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Diabetic wound (DW) is the most devastating complication resulting in significant mortality and morbidity in diabetic patients. The standard treatment of DW care fails to address the prerequisites of treating DW owing to its multifactorial pathophysiology. Henceforth, developing a single treatment strategy to handle all the loopholes may effectively manage DW. The objective of the current study was to formulate Human beta defensin-2 (HBD-2) loaded Poly (lactic-co-glycolic acid) (PLGA) nanoparticle impregnated in collagen/chitosan (COL-CS) composite scaffolds for the accelerated healing of DW. Upon investigation, the developed biodegradable crosslinked scaffold possesses low matrix degradation, optimum porosity, and sustained drug release than the non-crosslinked scaffold. In vitro studies revealed that the HBD-2 COL-CS scaffold was biocompatible and accelerated cell migration and angiogenesis. The HBD-2 COL-CS scaffold showed significant antimicrobial activity in S. aureus, E. coli, and P. aeruginosa. The in vivo studies revealed that the HBD-2 COL-CS treated group accelerated healing compared to those in COL-CS and control groups. The ELISA results indicated a significant decrease in MMP-9, TNF-α, MPO, NAG, and NO with an increase in IL-10 in HBD-2 COL-CS treated group. The accelerated healing in HBD-2 COL-CS treated group might be due to the synergistic effects of PLGA (collagen synthesis and deposition and positive angiogenic effect), HBD-2 (anti-inflammatory, antibacterial, positive angiogenic effect, cell proliferation, and migration), COL (established wound healer and stabilizer) and CS (antibacterial, controlled drug release).
Collapse
Affiliation(s)
- Bharat Kumar Reddy Sanapalli
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu 643001, India.
| | - Vidyasrilekha Yele
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu 643001, India.
| | - Mantosh Kumar Singh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu 643001, India.
| | - Shilpa N Thumbooru
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu 643001, India.
| | - Madhukiran Parvathaneni
- Department of Biotechnology, Harrisburg University of Science & Technology, 326 Market Street, Harrisburg, PA 17101, USA; Arni Medica, 4475 South Clinton Ave, Suite 230, South Plainfield, NJ 07080, USA; CRC Pharma LLC, 333 Littleton Road, Parsippany, NJ 07054, USA.
| | | |
Collapse
|
2
|
AbouSamra MM, El Hoffy NM, El-Wakil NA, Awad GEA, Kamel R. Computational Investigation to Design Ofloxacin-Loaded Hybridized Nanocellulose/Lipid Nanogels for Accelerated Skin Repair. Gels 2022; 8:gels8090593. [PMID: 36135305 PMCID: PMC9498533 DOI: 10.3390/gels8090593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The pharmaceutical application of biomaterials has attained a great success. Rapid wound healing is an important goal for many researchers. Hence, this work deals with the development of nanocellulose crystals/lipid nanogels loaded with ofloxacin (OFX) to promote skin repair while inhibiting bacterial infection. Ofloxacin-loaded hybridized nanocellulose/lipid nanogels (OFX-HNCNs) were prepared and evaluated adopting a computational method based on regression analysis. The optimized nanogels (OFX-HNCN7) showed a spherical outline with an encapsulation efficiency (EE), particle size (PS) and zeta potential (ZP) values of 97.53 ± 1.56%, 200.2 ± 6.74 nm and -26.4 ± 0.50 mV, respectively, with an extended drug release profile. DSC examination of OFX-HNCN7 proved the amorphization of the encapsulated drug into the prepared OFX-HNCNs. Microbiological studies showed the prolonged inhibition of bacterial growth by OFX-HNCN7 compared to the free drug. The cytocompatibility of OFX-HNCN7 was proved by Sulforhodamine B assay. Tissue repair was evaluated using the epidermal scratch assay based on cell migration in human skin fibroblast cell line, and the results depicted that cell treated with OFX-HNCN7 showed a faster and more efficient healing compared to the control. In overall, the obtained findings emphasize the benefits of using the eco-friendly bioactive nanocellulose, hybridized with lipid, to prepare a nanocarrier for skin repair.
Collapse
Affiliation(s)
- Mona M. AbouSamra
- Pharmaceutical Technology Department, National Research Centre, Giza 12622, Egypt
| | - Nada M. El Hoffy
- Faculty of Pharmacy, Future University in Egypt, New Cairo 11835, Egypt
- Correspondence: (N.M.E.H.); or (R.K.); Tel.: +20-100-80-20-20-2 (N.M.E.H.); +20-11-13-63-91-93 (R.K.)
| | - Nahla A. El-Wakil
- Cellulose and Paper Department, National Research Centre, Giza 12622, Egypt
| | - Ghada E. A. Awad
- Chemistry of Natural and Microbial Product Department, National Research Centre, Giza 12622, Egypt
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Giza 12622, Egypt
- Correspondence: (N.M.E.H.); or (R.K.); Tel.: +20-100-80-20-20-2 (N.M.E.H.); +20-11-13-63-91-93 (R.K.)
| |
Collapse
|
3
|
Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int J Mol Sci 2022; 23:ijms23169035. [PMID: 36012297 PMCID: PMC9409034 DOI: 10.3390/ijms23169035] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022] Open
Abstract
Biopolymeric nanoparticulate systems hold favorable carrier properties for active delivery. The enhancement in the research interest in alginate formulations in biomedical and pharmaceutical research, owing to its biodegradable, biocompatible, and bioadhesive characteristics, reiterates its future use as an efficient drug delivery matrix. Alginates, obtained from natural sources, are the colloidal polysaccharide group, which are water-soluble, non-toxic, and non-irritant. These are linear copolymeric blocks of α-(1→4)-linked l-guluronic acid (G) and β-(1→4)-linked d-mannuronic acid (M) residues. Owing to the monosaccharide sequencing and the enzymatically governed reactions, alginates are well-known as an essential bio-polymer group for multifarious biomedical implementations. Additionally, alginate’s bio-adhesive property makes it significant in the pharmaceutical industry. Alginate has shown immense potential in wound healing and drug delivery applications to date because its gel-forming ability maintains the structural resemblance to the extracellular matrices in tissues and can be altered to perform numerous crucial functions. The initial section of this review will deliver a perception of the extraction source and alginate’s remarkable properties. Furthermore, we have aspired to discuss the current literature on alginate utilization as a biopolymeric carrier for drug delivery through numerous administration routes. Finally, the latest investigations on alginate composite utilization in wound healing are addressed.
Collapse
|
4
|
Kumar Reddy Sanapalli B, Tyagi R, Shaik AB, Ranakishor P, Bhandare RR, Annadurai S, Venkata Satyanarayana Reddy Karri V. L-Glutamic acid loaded collagen chitosan composite scaffold as regenerative medicine for the accelerated healing of diabetic wounds. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
5
|
Kamel R, El-batanony R, Salama A. Pioglitazone-loaded three-dimensional composite polymeric scaffolds: A proof of concept study in wounded diabetic rats. Int J Pharm 2019; 570:118667. [DOI: 10.1016/j.ijpharm.2019.118667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
|
6
|
Rojewska M, Bartkowiak A, Milanowski B, Prochaska K, Lulek J. Physicochemical and release studies of new mucoadhesive fluconazole delivery systems. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Arsalani N, Kazeminava F, Akbari A, Hamishehkar H, Jabbari E, Kafil HS. Synthesis of polyhedral oligomeric silsesquioxane nano‐crosslinked poly(ethylene glycol)‐based hybrid hydrogels for drug delivery and antibacterial activity. POLYM INT 2018. [DOI: 10.1002/pi.5748] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nasser Arsalani
- Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of ChemistryUniversity of Tabriz Tabriz Iran
| | - Fahimeh Kazeminava
- Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of ChemistryUniversity of Tabriz Tabriz Iran
| | - Ali Akbari
- Department of ChemistryUniversity of Maragheh Maragheh Iran
| | - Hamed Hamishehkar
- Drug Applied Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Esmaiel Jabbari
- Department of Chemical EngineeringUniversity of South Carolina Columbia SC USA
| | - Hossein S Kafil
- Biotechnology Research CenterTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
8
|
Composite carbohydrate interpenetrating polyelectrolyte nano-complexes (IPNC) as a controlled oral delivery system of citalopram HCl for pediatric use: in-vitro/in-vivo evaluation and histopathological examination. Drug Deliv Transl Res 2018. [DOI: 10.1007/s13346-018-0506-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|