1
|
Biernat M, Woźniak A, Chraniuk M, Panasiuk M, Tymowicz-Grzyb P, Pagacz J, Antosik A, Ciołek L, Gromadzka B, Jaegermann Z. Effect of Selected Crosslinking and Stabilization Methods on the Properties of Porous Chitosan Composites Dedicated for Medical Applications. Polymers (Basel) 2023; 15:polym15112507. [PMID: 37299306 DOI: 10.3390/polym15112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Chitosan is one of the most commonly employed natural polymers for biomedical applications. However, in order to obtain stable chitosan biomaterials with appropriate strength properties, it is necessary to subject it to crosslinking or stabilization. Composites based on chitosan and bioglass were prepared using the lyophilization method. In the experimental design, six different methods were used to obtain stable, porous chitosan/bioglass biocomposite materials. This study compared the crosslinking/stabilization of chitosan/bioglass composites with ethanol, thermal dehydration, sodium tripolyphosphate, vanillin, genipin, and sodium β-glycerophosphate. The physicochemical, mechanical, and biological properties of the obtained materials were compared. The results showed that all the selected crosslinking methods allow the production of stable, non-cytotoxic porous composites of chitosan/bioglass. The composite with genipin stood out with the best of the compared properties, taking into account biological and mechanical characteristics. The composite stabilized with ethanol is distinct in terms of its thermal properties and swelling stability, and it also promotes cell proliferation. Regarding the specific surface area, the highest value exposes the composite stabilized by the thermal dehydration method.
Collapse
Affiliation(s)
- Monika Biernat
- Biomaterials Research Group, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland
| | - Anna Woźniak
- Biomaterials Research Group, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland
| | - Milena Chraniuk
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland
| | - Mirosława Panasiuk
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland
| | - Paulina Tymowicz-Grzyb
- Biomaterials Research Group, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland
| | - Joanna Pagacz
- Biomaterials Research Group, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland
| | - Agnieszka Antosik
- Biomaterials Research Group, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland
| | - Lidia Ciołek
- Biomaterials Research Group, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland
| | - Beata Gromadzka
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland
| | - Zbigniew Jaegermann
- Biomaterials Research Group, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland
| |
Collapse
|
2
|
Woźniak A, Biernat M. Methods for crosslinking and stabilization of chitosan structures for potential medical applications. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221085738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chitosan is a well-known polymer widely used in tissue engineering and regenerative medicine. It is biocompatible, biodegradable, non-toxic, has antibacterial and osteoconductive properties. Chitosan is often used in the form of composites (with the participation of ceramic particles), membranes, hydrogels or nanoparticles. The problem with biomaterials is their low durability, rapid degradation, poor mechanical properties and cytotoxicity. Cross-linking or stabilization of such materials allows for solving these problems. It is important that the compounds used for this purpose exhibit limited or no toxicity. The presented article is a review and presents some methods of cross-linking/stabilization of chitosan structures. The analysis concerns low or non-cytotoxic cross-linking/stabilization methods. The discussed compounds used for the purpose of chitosan structure fixation are: cinnamaldehyde, genipin, L-aspartic acid, vanillin, sodium carbonate, sodium alginate, BGP, ethanol and TPP. There is discussed also a hydrothermal/dehydrothermal method which seems to be promising as it is more advantageous since no additional compounds are introduced into the structure.
Collapse
Affiliation(s)
- Anna Woźniak
- Biomaterials Research Group, Lukasiewicz Research Network—Institute of Ceramics and Building Materials, Ceramics and Concrete Division in Warsaw, Warsaw, Poland
| | - Monika Biernat
- Biomaterials Research Group, Lukasiewicz Research Network—Institute of Ceramics and Building Materials, Ceramics and Concrete Division in Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Riester O, Borgolte M, Csuk R, Deigner HP. Challenges in Bone Tissue Regeneration: Stem Cell Therapy, Biofunctionality and Antimicrobial Properties of Novel Materials and Its Evolution. Int J Mol Sci 2020; 22:E192. [PMID: 33375478 PMCID: PMC7794985 DOI: 10.3390/ijms22010192] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
An aging population leads to increasing demand for sustained quality of life with the aid of novel implants. Patients expect fast healing and few complications after surgery. Increased biofunctionality and antimicrobial behavior of implants, in combination with supportive stem cell therapy, can meet these expectations. Recent research in the field of bone implants and the implementation of autologous mesenchymal stem cells in the treatment of bone defects is outlined and evaluated in this review. The article highlights several advantages, limitations and advances for metal-, ceramic- and polymer-based implants and discusses the future need for high-throughput screening systems used in the evaluation of novel developed materials and stem cell therapies. Automated cell culture systems, microarray assays or microfluidic devices are required to efficiently analyze the increasing number of new materials and stem cell-assisted therapies. Approaches described in the literature to improve biocompatibility, biofunctionality and stem cell differentiation efficiencies of implants range from the design of drug-laden nanoparticles to chemical modification and the selection of materials that mimic the natural tissue. Combining suitable implants with mesenchymal stem cell treatment promises to shorten healing time and increase treatment success. Most research studies focus on creating antibacterial materials or modifying implants with antibacterial coatings in order to address the increasing number of complications after surgeries that are mostly caused by bacterial infections. Moreover, treatment of multiresistant pathogens will pose even bigger challenges in hospitals in the future, according to the World Health Organization (WHO). These antibacterial materials will help to reduce infections after surgery and the number of antibiotic treatments that contribute to the emergence of new multiresistant pathogens, whilst the antibacterial implants will help reduce the amount of antibiotics used in clinical treatment.
Collapse
Affiliation(s)
- Oliver Riester
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (O.R.); (M.B.)
| | - Max Borgolte
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (O.R.); (M.B.)
| | - René Csuk
- Institute of Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle (Saale), Germany;
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (O.R.); (M.B.)
- EXIM Department, Fraunhofer Institute IZI, Leipzig, Schillingallee 68, 18057 Rostock, Germany
- Faculty of Science, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|