1
|
Kareem YM, Hamad TI. Assessment of the antibacterial effect of Barium Titanate nanoparticles against Staphylococcus epidermidis adhesion after addition to maxillofacial silicone. F1000Res 2023; 12:385. [PMID: 37663198 PMCID: PMC10468664 DOI: 10.12688/f1000research.132727.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 09/05/2023] Open
Abstract
Background: Maxillofacial silicones are the most popular and acceptable material for making maxillofacial prostheses, but they are not perfect in every sense. To enhance their effectiveness, more improvements to their properties are required, such as their antimicrobial efficiency. This study assess the antibacterial effect of barium titanate nanoparticles in various percentages against staphylococcus epidermidis biofilm adhesion after addition to maxillofacial silicone. Methods: Barium titanate nanoparticles were added into VST-50 platinum silicone elastomer in four weight percentages (0.25wt%, 0.5wt%, 0.75wt% and 1wt%). 50 specimens were prepared and categorized into five groups; one control group and four experimental groups. All conducted data was statistically analyzed using (one-way ANOVA) analysis of variance, and Games-Howell multiple comparison test (significant level at p < 0.05). Shapiro-Wilk and Levene's tests were used, respectively, to evaluate the normal distribution and homogeneity of the data. Result: One-way ANOVA test revealed a highly significant difference between all groups, and Games-Howell test revealed a highly significant difference between the control group and the four experimental groups. The 0.25wt% and 0.5wt% groups revealed a highly significant difference between them and with the (0.75%wt and 0.1%wt) groups. While the 0.75wt% group revealed a significant difference with 1wt% group. Conclusions: The addition of barium titanate to VST-50 maxillofacial silicone enhanced the antibacterial activity of silicon against Staphylococcus epidermidis, and this activity seems to be concentration dependent. FTIR analysis demonstrated no chemical interaction between the Barium Titanate and the VST-50 maxillofacial silicone elastomer. SEM pictures show that the barium titanate nanopowder was effectively dispersed inside the maxillofacial silicone matrix.
Collapse
Affiliation(s)
- Yasir Mohammed Kareem
- B.D.S. Department of Prosthodontic, College of Dentistry, University of Baghdad, Baghdad, Baghdad Governorate, Iraq
| | - Thekra Ismael Hamad
- B.D.S., M.Sc., Ph.D., Prof. Department of Prosthodontic, College of Dentistry, University of Baghdad, Baghdad, Baghdad Governorate, Iraq
| |
Collapse
|
2
|
Ibrahim SW, Hamad TI, Haider J. Biological properties of polycaprolactone and barium titanate composite in biomedical applications. Sci Prog 2023; 106:368504231215942. [PMID: 38031343 PMCID: PMC10687994 DOI: 10.1177/00368504231215942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The ceramic-polymer composite materials are widely known for their exceptional mechanical and biological properties. Polycaprolactone (PCL) is a biodegradable polymer material extensively used in various biomedical applications. At the same time, barium titanate (BT), a ceramic material, exhibits piezoelectric properties similar to bone, which is essential for osseointegration. Furthermore, a composite material that combines the benefits of PCL and BT results in an innovative composite material with enhanced properties for biomedical applications. Thus, this review is organised into three sections. Firstly, it aims to provide an overview of the current research on evaluating biological properties, including antibacterial activity, cytotoxicity and osseointegration, of PCL polymeric matrices in its pure form and reinforced structures with ceramics, polymers and natural extracts. The second section investigates the biological properties of BT, both in its pure form and in combination with other supporting materials. Finally, the third section provides a summary of the biological properties of the PCLBT composite material. Furthermore, the existing challenges of PCL, BT and their composites, along with future research directions, have been presented. Therefore, this review will provide a state-of-the-art understanding of the biological properties of PCL and BT composites as potential futuristic materials in biomedical applications.
Collapse
Affiliation(s)
- Sabreen Waleed Ibrahim
- Prosthodontic Department, College of Dentistry, Al Mustansiriyah University, Baghdad, Iraq
| | - Thekra Ismael Hamad
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Julfikar Haider
- Department of Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
3
|
Fernandes BF, Silva N, Marques JF, Da Cruz MB, Tiainen L, Gasik M, Carvalho Ó, Silva FS, Caramês J, Mata A. Bio-Piezoelectric Ceramic Composites for Electroactive Implants-Biological Performance. Biomimetics (Basel) 2023; 8:338. [PMID: 37622943 PMCID: PMC10452837 DOI: 10.3390/biomimetics8040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Barium titanate (BaTiO3) piezoelectric ceramic may be a potential alternative for promoting osseointegration due to its piezoelectric properties similar to bone electric potentials generated in loading function. In this sense, the aim of this in vitro study was to evaluate the cellular response of human osteoblasts and gingival fibroblasts as well as the impact on S. oralis when in contact with BaTiO3 functionalized zirconia implant surfaces with piezoelectric properties. Zirconia discs with BaTiO3 were produced and contact poling (piezo activation) was performed. Osteoblasts (hFOB 1.19), fibroblasts (HGF hTERT) and S. oralis were culture on discs. Cell viability and morphology, cell differentiation markers, bacterial adhesion and growth were evaluated. The present study suggests that zirconia composite surfaces with the addition of piezoelectric BaTiO3 are not cytotoxic to peri-implant cells. Also, they seem to promote a faster initial osteoblast differentiation. Moreover, these surfaces may inhibit the growth of S. oralis by acting as a bacteriostatic agent over time. Although the piezoelectric properties do not affect the cellular inflammatory profile, they appear to enable the initial adhesion of bacteria, however this is not significant over the entire testing period. Furthermore, the addition of non-poled BaTiO3 to zirconia may have a potential reduction effect on IL-6 mediated-inflammatory activity in fibroblasts.
Collapse
Affiliation(s)
- Beatriz Ferreira Fernandes
- Oral Biology and Biochemistry Research Group—Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
| | - Neusa Silva
- Oral Biology and Biochemistry Research Group—Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
| | - Joana Faria Marques
- Oral Biology and Biochemistry Research Group—Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
| | - Mariana Brito Da Cruz
- Oral Biology and Biochemistry Research Group—Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
| | - Laura Tiainen
- Department of Mechanical Engineering, Center for Microelectromechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
| | - Michael Gasik
- Department of Chemical and Metallurgical Engineering, Aalto University, 02780 Espoo, Finland
| | - Óscar Carvalho
- Department of Mechanical Engineering, Center for Microelectromechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
| | - Filipe Samuel Silva
- Department of Mechanical Engineering, Center for Microelectromechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
| | - João Caramês
- Implant & Tissue Regeneration Group—Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), LIBPhys-FTC UID/FIS/04559/2013, Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
| | - António Mata
- Oral Biology and Biochemistry Research Group—Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), LIBPhys-FCT UID/FIS/04559/2013, Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
- CEMDBE—Cochrane Portugal, Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
| |
Collapse
|
4
|
Montoya C, Jain A, Londoño JJ, Correa S, Lelkes PI, Melo MA, Orrego S. Multifunctional Dental Composite with Piezoelectric Nanofillers for Combined Antibacterial and Mineralization Effects. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43868-43879. [PMID: 34494813 DOI: 10.1021/acsami.1c06331] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
After nearly seven decades of development, dental composite restorations continue to show limited clinical service. The triggering point for restoration failure is the degradation of the bond at the tooth-biomaterial interface from chemical, biological, and mechanical sources. Oral biofilms form at the bonded interfaces, producing enzymes and acids that demineralize hard tissues and damage the composite. Removing bacteria from bonded interfaces and remineralizing marginal gaps will increase restorations' clinical service. To address this need, we propose for the first time the use of piezoelectric nanoparticles of barium titanate (BaTiO3) as a multifunctional bioactive filler in dental resin composites, offering combined antibacterial and (re)mineralization effects. In this work, we developed and characterized the properties of dental piezoelectric resin composites, including the degree of conversion and mechanical and physical properties, for restorative applications. Moreover, we evaluated the antibacterial and mineralization responses of piezoelectric composites in vitro. We observed a significant reduction in biofilm growth (up to 90%) and the formation of thick and dense layers of calcium phosphate minerals in piezoelectric composites compared to control groups. The antibacterial mechanism was also revealed. Additionally, we developed a unique approach evaluating the bond strength of dentin-adhesive-composite interfaces subjected to simultaneous attacks from bacteria and cyclic mechanical loading operating in synergy. Our innovative bioactive multifunctional composite provides an ideal technology for restorative applications using a single filler with combined long-lasting nonrechargeable antibacterial/remineralization effects.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Anubhav Jain
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Juan José Londoño
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Bioengineering Research Group (GIB), Department of Mechanical Engineering, Universidad EAFIT, Medellin 050022, Colombia
| | - Santiago Correa
- Bioengineering Research Group (GIB), Department of Mechanical Engineering, Universidad EAFIT, Medellin 050022, Colombia
| | - Peter I Lelkes
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Mary Anne Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
5
|
Boschetto F, Doan HN, Phong Vo P, Zanocco M, Yamamoto K, Zhu W, Adachi T, Kinashi K, Marin E, Pezzotti G. Bacteriostatic Behavior of PLA-BaTiO 3 Composite Fibers Synthesized by Centrifugal Spinning and Subjected to Aging Test. Molecules 2021; 26:2918. [PMID: 34069021 PMCID: PMC8157108 DOI: 10.3390/molecules26102918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
The present work investigated the effect of Polylactic acid (PLA) fibers produced by centrifugal spinning with incorporated BaTiO3 particles to improve their bacteriostatic behavior. The PLA matrix and three composites, presenting three different amounts of fillers, were subjected to UV/O3 treatment monitoring the possible modifications that occurred over time. The morphological and physical properties of the surfaces were characterized by different microscopic techniques, contact angle, and surface potential measurements. Subsequently, the samples were tested in vitro with human dermal fibroblasts (HDF) to verify the cytotoxicity of the substrates. No significant differences between the PLA matrix and composites emerged; the high hydrophobicity of the fibers, derived by the polymer structure, represented an obstacle limiting the fibroblast attachment. Samples underwent bacterial exposure (Staphylococcus epidermidis) for 12 and 24 h. Increasing the concentration of BT, the number of living bacteria and their distribution decreased in comparison with the PLA matrix suggesting an effect of the inorganic filler, which generates a neutralization effect leading to reactive oxygen species (ROS) generation and subsequently to bacterial damages. These results suggest that the barium titanate (BT) fillers clearly improve the antibacterial properties of PLA fibers after aging tests made before bacterial exposure, representing a potential candidate in the creation of composites for medical applications.
Collapse
Affiliation(s)
- Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (M.Z.); (W.Z.); (E.M.); (G.P.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.Y.); (T.A.)
| | - Hoan Ngoc Doan
- Functional Polymer Design Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.N.D.); (P.P.V.); (K.K.)
| | - Phu Phong Vo
- Functional Polymer Design Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.N.D.); (P.P.V.); (K.K.)
| | - Matteo Zanocco
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (M.Z.); (W.Z.); (E.M.); (G.P.)
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kenta Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.Y.); (T.A.)
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (M.Z.); (W.Z.); (E.M.); (G.P.)
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.Y.); (T.A.)
| | - Kenji Kinashi
- Functional Polymer Design Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.N.D.); (P.P.V.); (K.K.)
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (M.Z.); (W.Z.); (E.M.); (G.P.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.Y.); (T.A.)
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (M.Z.); (W.Z.); (E.M.); (G.P.)
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0854, Japan
| |
Collapse
|