1
|
Langwald SV, Ehrmann A, Sabantina L. Measuring Physical Properties of Electrospun Nanofiber Mats for Different Biomedical Applications. MEMBRANES 2023; 13:488. [PMID: 37233549 PMCID: PMC10220787 DOI: 10.3390/membranes13050488] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Electrospun nanofiber mats are nowadays often used for biotechnological and biomedical applications, such as wound healing or tissue engineering. While most studies concentrate on their chemical and biochemical properties, the physical properties are often measured without long explanations regarding the chosen methods. Here, we give an overview of typical measurements of topological features such as porosity, pore size, fiber diameter and orientation, hydrophobic/hydrophilic properties and water uptake, mechanical and electrical properties as well as water vapor and air permeability. Besides describing typically used methods with potential modifications, we suggest some low-cost methods as alternatives in cases where special equipment is not available.
Collapse
Affiliation(s)
- Sarah Vanessa Langwald
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany;
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany;
| | - Lilia Sabantina
- Faculty of Clothing Technology and Garment Engineering, School of Culture + Design, HTW Berlin—University of Applied Sciences, 12459 Berlin, Germany
| |
Collapse
|
2
|
Pattnaik S, Swain K, Ramakrishna S. Optimal delivery of poorly soluble drugs using electrospun nanofiber technology: Challenges, state of the art, and future directions. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1859. [PMID: 36193733 DOI: 10.1002/wnan.1859] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022]
Abstract
Poor aqueous solubility of both, existing drug molecules and those which are currently in the developmental stage, have posed a great challenge to pharmaceutical scientists because they often exhibit poor dissolution behavior and subsequent poor and erratic bioavailability. This has triggered extensive research to explore nanotechnology-based technology platforms for possible rescue. Recently, nanofibers have been exploited widely for diverse biomedical applications including for drug delivery. Electrospun nanofibers are capable of preserving the homogeneously loaded therapeutic agents in amorphous state potentialy impairing devitrification. The present review aims at providing an overview of the various key factors that affect the electrospinning process and characteristics of the nanofibers while fabrication of drug loaded nanofibers for poorly soluble drug candidates. The review explores various methodological advancements in the electrospinning process and set-ups for production scale-up. The various types of electrospun nanofibers (like simple matrix, core-sheath, Janus, and inclusion complex nanofibers) that have been exploited for the delivery of poorly soluble drugs are also critically assessed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Satyanarayan Pattnaik
- Division of Advanced Drug Delivery, Talla Padmavathi College of Pharmacy, Warangal, India
| | - Kalpana Swain
- Division of Advanced Drug Delivery, Talla Padmavathi College of Pharmacy, Warangal, India
| | - Seeram Ramakrishna
- NUS Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Recent Progress of the Preparation and Application of Electrospun Porous Nanofibers. Polymers (Basel) 2023; 15:polym15040921. [PMID: 36850206 PMCID: PMC9961710 DOI: 10.3390/polym15040921] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Electrospun porous nanofibers have gained a lot of interest recently in various fields because of their adjustable porous structure, high specific surface area, and large number of active sites, which can further enhance the performance of materials. This paper provides an overview of the common polymers, preparation, and applications of electrospun porous nanofibers. Firstly, the polymers commonly used to construct porous structures and the main pore-forming methods in porous nanofibers by electrospinning, namely the template method and phase separation method, are introduced. Secondly, recent applications of electrospun porous nanofibers in air purification, water treatment, energy storage, biomedicine, food packaging, sensor, sound and wave absorption, flame retardant, and heat insulation are reviewed. Finally, the challenges and possible research directions for the future study of electrospun porous nanofibers are discussed.
Collapse
|
4
|
Application of electrowetting on dielectric (EWOD) in drug release control and release-on-demand. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Electrospun Porous Nanofibers: Pore−Forming Mechanisms and Applications for Photocatalytic Degradation of Organic Pollutants in Wastewater. Polymers (Basel) 2022; 14:polym14193990. [PMID: 36235934 PMCID: PMC9570808 DOI: 10.3390/polym14193990] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Electrospun porous nanofibers have large specific surface areas and abundant active centers, which can effectively improve the properties of nanofibers. In the field of photocatalysis, electrospun porous nanofibers can increase the contact area of loaded photocatalytic particles with light, shorten the electron transfer path, and improve photocatalytic activity. In this paper, the main pore−forming mechanisms of electrospun porous nanofiber are summarized as breath figures, phase separation (vapor−induced phase separation, non−solvent−induced phase separation, and thermally induced phase separation) and post−processing (selective removal). Then, the application of electrospun porous nanofiber loading photocatalytic particles in the degradation of pollutants (such as organic, inorganic, and bacteria) in water is introduced, and its future development prospected. Although porous structures are beneficial in improving the photocatalytic performance of nanofibers, they reduce their mechanical properties. Therefore, strategies for improving the mechanical properties of electrospun porous nanofibers are also briefly discussed.
Collapse
|
6
|
Nanostructured Electrospun Polycaprolactone-Propolis Mats Composed of Different Morphologies for Potential Use in Wound Healing. Molecules 2022; 27:molecules27165351. [PMID: 36014590 PMCID: PMC9413572 DOI: 10.3390/molecules27165351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate different types of morphologies obtained using the electrospinning process to produce a material that enables wound healing while performing a controlled release. Using benign solvents, the authors prepared and characterised electrospun polycaprolactone mats loaded with propolis, a popular extract in traditional medicine with potential for skin repair. Different morphologies were obtained from distinct storage periods of the solution before electrospinning to investigate the effect of PCL hydrolysis (average diameters of fibres and beads: 159.2-280.5 nm and 1.9-5.6 μm, respectively). Phytochemical and FTIR analyses of the extract confirmed propolis composition. GPC and viscosity analyses showed a decrease in polymer molecular weight over the storage period (about a 70% reduction over 14 days) and confirmed that it was responsible for the nanostructure diversity. Moreover, propolis acted as a lubricant agent, affecting the spun solutions' viscosity and the thermal properties and hydrophilicity of the mats. All samples were within the value range of the water vapour transpiration rate of the commercial products (1263.08 to 2179.84 g/m2·day). Even though the presence of beads did not affect the propolis release pattern, an in vitro wound-healing assay showed that propolis-loaded mats composed of beaded fibres increased the cell migration process. Thus, these films could present the potential for use in wound dressing applications.
Collapse
|
7
|
Miranda CS, Silva AFG, Pereira-Lima SMMA, Costa SPG, Homem NC, Felgueiras HP. Tunable Spun Fiber Constructs in Biomedicine: Influence of Processing Parameters in the Fibers' Architecture. Pharmaceutics 2022; 14:pharmaceutics14010164. [PMID: 35057060 PMCID: PMC8781456 DOI: 10.3390/pharmaceutics14010164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/11/2022] Open
Abstract
Electrospinning and wet-spinning have been recognized as two of the most efficient and promising techniques for producing polymeric fibrous constructs for a wide range of applications, including optics, electronics, food industry and biomedical applications. They have gained considerable attention in the past few decades because of their unique features and tunable architectures that can mimic desirable biological features, responding more effectively to local demands. In this review, various fiber architectures and configurations, varying from monolayer and core-shell fibers to tri-axial, porous, multilayer, side-by-side and helical fibers, are discussed, highlighting the influence of processing parameters in the final constructs. Additionally, the envisaged biomedical purposes for the examined fiber architectures, mainly focused on drug delivery and tissue engineering applications, are explored at great length.
Collapse
Affiliation(s)
- Catarina S. Miranda
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Ana Francisca G. Silva
- Center of Chemistry (CQ), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.G.S.); (S.M.M.A.P.-L.); (S.P.G.C.)
| | - Sílvia M. M. A. Pereira-Lima
- Center of Chemistry (CQ), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.G.S.); (S.M.M.A.P.-L.); (S.P.G.C.)
| | - Susana P. G. Costa
- Center of Chemistry (CQ), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.G.S.); (S.M.M.A.P.-L.); (S.P.G.C.)
| | - Natália C. Homem
- Digital Transformation CoLab (DTx), Building 1, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- Correspondence: ; Tel.: +351-253-510-283; Fax: +351-253-510-293
| |
Collapse
|
8
|
Stachewicz U. Application of Electrospun Polymeric Fibrous Membranes as Patches for Atopic Skin Treatments. ADVANCES IN POLYMER SCIENCE 2022. [DOI: 10.1007/12_2022_139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Chen X, Li H, Lu W, Guo Y. Antibacterial Porous Coaxial Drug-Carrying Nanofibers for Sustained Drug-Releasing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1316. [PMID: 34067723 PMCID: PMC8157037 DOI: 10.3390/nano11051316] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023]
Abstract
The phenomenon of drug burst release is the main problem in the field of drug delivery systems, as it means that a good therapeutic effect cannot be acheived. Nanofibers developed by electrospinning technology have large specific surface areas, high porosity, and easily controlled morphology. They are being considered as potential carriers for sustained drug release. In this paper, we obtained polycaprolactone (PCL)/polylactic acid (PLA) core-shell porous drug-carrying nanofibers by using coaxial electrospinning technology and the nonsolvent-induced phase separation method. Roxithromycin (ROX), a kind of antibacterial agent, was encapsulated in the core layer. The morphology, composition, and thermal properties of the resultant nanofibers were characterized by scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). Besides this, the in vitro drug release profile was investigated; it showed that the release rate of the prepared coaxial porous nanofibers with two different pore sizes was 30.10 ± 3.51% and 35.04 ± 1.98% in the first 30 min, and became 92.66 ± 3.13% and 88.94 ± 1.58% after 14 days. Compared with the coaxial nonporous nanofibers and nanofibers prepared by uniaxial electrospinning with or without pores, the prepared coaxial porous nanofibers revealed that the burst release was mitigated and the dissolution rate of the hydrophobic drugs was increased. The further antimicrobial activity demonstrated that the inhibition zone diameter of the coaxial nanofibers with two different pore sizes was 1.70 ± 0.10 cm and 1.73 ± 0.23 cm, exhibiting a good antibacterial effect against Staphylococcus aureus. Therefore, the prepared nanofibers with the coaxial porous structures could serve as promising drug delivery systems.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (H.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghai Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (H.L.)
| | - Weipeng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (H.L.)
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (H.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Ponrasu T, Chen BH, Chou TH, Wu JJ, Cheng YS. Fast Dissolving Electrospun Nanofibers Fabricated from Jelly Fig Polysaccharide/Pullulan for Drug Delivery Applications. Polymers (Basel) 2021; 13:241. [PMID: 33445743 PMCID: PMC7830562 DOI: 10.3390/polym13020241] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
The fast-dissolving drug delivery systems (FDDDSs) are developed as nanofibers using food-grade water-soluble hydrophilic biopolymers that can disintegrate fast in the oral cavity and deliver drugs. Jelly fig polysaccharide (JFP) and pullulan were blended to prepare fast-dissolving nanofiber by electrospinning. The continuous and uniform nanofibers were produced from the solution of 1% (w/w) JFP, 12% (w/w) pullulan, and 1 wt% Triton X-305. The SEM images confirmed that the prepared nanofibers exhibited uniform morphology with an average diameter of 144 ± 19 nm. The inclusion of JFP in pullulan was confirmed by TGA and FTIR studies. XRD analysis revealed that the increased crystallinity of JFP/pullulan nanofiber was observed due to the formation of intermolecular hydrogen bonds. The tensile strength and water vapor permeability of the JFP/pullulan nanofiber membrane were also enhanced considerably compared to pullulan nanofiber. The JFP/pullulan nanofibers loaded with hydrophobic model drugs like ampicillin and dexamethasone were rapidly dissolved in water within 60 s and release the encapsulants dispersive into the surrounding. The antibacterial activity, fast disintegration properties of the JFP/pullulan nanofiber were also confirmed by the zone of inhibition and UV spectrum studies. Hence, JFP/pullulan nanofibers could be a promising carrier to encapsulate hydrophobic drugs for fast-dissolving/disintegrating delivery applications.
Collapse
Affiliation(s)
- Thangavel Ponrasu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan; (T.P.); (B.-H.C.); (T.-H.C.)
| | - Bei-Hsin Chen
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan; (T.P.); (B.-H.C.); (T.-H.C.)
| | - Tzung-Han Chou
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan; (T.P.); (B.-H.C.); (T.-H.C.)
| | - Jia-Jiuan Wu
- Department of Nutrition, China Medical University, Hsueh-Shih Road No. 91, Taichung 404, Taiwan;
| | - Yu-Shen Cheng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan; (T.P.); (B.-H.C.); (T.-H.C.)
| |
Collapse
|
11
|
Lanno GM, Ramos C, Preem L, Putrinš M, Laidmäe I, Tenson T, Kogermann K. Antibacterial Porous Electrospun Fibers as Skin Scaffolds for Wound Healing Applications. ACS OMEGA 2020; 5:30011-30022. [PMID: 33251437 PMCID: PMC7689890 DOI: 10.1021/acsomega.0c04402] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/03/2020] [Indexed: 05/14/2023]
Abstract
Electrospun fiber scaffolds have a huge potential for the successful treatment of infected wounds based on their unique properties. Although several studies report novel drug-loaded electrospun fiber-based biomaterials, many of these do not provide information on their interactions with eukaryotic and bacterial cells. The main aim of this study was to develop antibacterial drug-loaded porous biocompatible polycaprolactone (PCL) fiber scaffolds mimicking the native extracellular matrix for wound healing purposes. Mechanical property evaluation and different biorelevant tests were conducted in order to understand the structure-activity relationships and reveal how the surface porosity of fibers and the fiber diameter affect the scaffold interactions with the living bacterial and eukaryotic fibroblast cells. Cell migration and proliferation assays and antibiofilm assays enabled us to enlighten the biocompatibility and safety of fiber scaffolds and their suitability to be used as scaffolds for the treatment of infected wounds. Here, we report that porous PCL microfiber scaffolds obtained using electrospinning at high relative humidity served as the best surfaces for fibroblast attachment and growth compared to the nonporous microfiber or nonporous nanofiber PCL scaffolds. Porous chloramphenicol-loaded microfiber scaffolds were more elastic compared to nonporous scaffolds and had the highest antibiofilm activity. The results indicate that in addition to the fiber diameter and fiber scaffold porosity, the single-fiber surface porosity and its effect on drug release, mechanical properties, cell viability, and antibiofilm activity need to be understood when developing antibacterial biocompatible scaffolds for wound healing applications. We show that pores on single fibers within an electrospun scaffold, in addition to nano- and microscale diameter of the fibers, change the living cell-fiber interactions affecting the antibiofilm efficacy and biocompatibility of the scaffolds for the local treatment of wounds.
Collapse
Affiliation(s)
- Georg-Marten Lanno
- Institute
of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Celia Ramos
- Institute
of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Liis Preem
- Institute
of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Marta Putrinš
- Institute
of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Ivo Laidmäe
- Institute
of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Department
of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Tanel Tenson
- Institute
of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Karin Kogermann
- Institute
of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| |
Collapse
|