1
|
Misirlic-Dencic S, Poljarevic J, Isakovic AM, Sabo T, Markovic I, Trajkovic V. Current Development of Metal Complexes with Diamine Ligands as Potential Anticancer Agents. Curr Med Chem 2020; 27:380-410. [DOI: 10.2174/0929867325666181031114306] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 01/21/2023]
Abstract
Background::
The discovery of cisplatin and the subsequent research revealed the importance
of dinitrogen-containing moiety for the anticancer action of metal complexes. Moreover, certain
diamine ligands alone display cytotoxicity that contributes to the overall activity of corresponding
complexes.
Objective::
To summarize the current knowledge on the anticancer efficacy, selectivity, and the mechanisms
of action of metal complexes with various types of diamine ligands.
Method::
The contribution of aliphatic acyclic, aliphatic cyclic, and aromatic diamine ligands to the
anticancer activity and selectivity/toxicity of metal complexes with different metal ions were analyzed
by comparison with organic ligand alone and/or conventional platinum-based chemotherapeutics.
Results::
The aliphatic acyclic diamine ligands are present mostly in complexes with platinum. Aliphatic
cyclic diamines are part of Pt(II), Ru(II) and Au(III) complexes, while aromatic diamine ligands
are found in Pt(II), Ru(II), Pd(II) and Ir(III) complexes. The type and oxidation state of metal ions
greatly influences the cytotoxicity of metal complexes with aliphatic acyclic diamine ligands. Lipophilicity
of organic ligands, dependent on alkyl-side chain length and structure, determines their cellular
uptake, with edda and eddp/eddip ligands being most useful in this regard. Aliphatic cyclic diamine
ligands improved the activity/toxicity ratio of oxaliplatin-type complexes. The complexes with aromatic
diamine ligands remain unexplored regarding their anticancer mechanism. The investigated complexes
mainly caused apoptotic or necrotic cell death.
Conclusion::
Metal complexes with diamine ligands are promising candidates for efficient and more
selective alternatives to conventional platinum-based chemotherapeutics. Further research is required to
reveal the chemico-physical properties and molecular mechanisms underlying their biological activity.
Collapse
Affiliation(s)
- Sonja Misirlic-Dencic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, Belgrade 11,000, Serbia
| | - Jelena Poljarevic
- Faculty of Chemistry, University of Belgrade, Belgrade 11,000, Serbia
| | - Andjelka M. Isakovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, Belgrade 11,000, Serbia
| | - Tibor Sabo
- Faculty of Chemistry, University of Belgrade, Belgrade 11,000, Serbia
| | - Ivanka Markovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, Belgrade 11,000, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Belgrade 11,000, Serbia
| |
Collapse
|
2
|
Pal M, Nandi U, Mukherjee D. Detailed account on activation mechanisms of ruthenium coordination complexes and their role as antineoplastic agents. Eur J Med Chem 2018; 150:419-445. [DOI: 10.1016/j.ejmech.2018.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 10/17/2022]
|
3
|
Terenzi A, Tomasello L, Spinello A, Bruno G, Giordano C, Barone G. (Dipyrido[3,2-a:2′,3′-c]phenazine)(glycinato)copper(II) perchlorate: A novel DNA-intercalator with anti-proliferative activity against thyroid cancer cell lines. J Inorg Biochem 2012; 117:103-10. [DOI: 10.1016/j.jinorgbio.2012.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 11/25/2022]
|
4
|
Kennedy DC, Patrick BO, James BR. Cationic ruthenium(III) maltolato–imidazole complexes — Synthesis, characterization, and antiproliferatory activity*Adapted from the Ph.D. thesis of D.C. Kennedy (see the References section). CAN J CHEM 2011. [DOI: 10.1139/v11-074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cationic RuIII complexes, trans-[Ru(ma)2(L)2]CF3SO3, where Hma = maltol = 3-hydroxy-2-methyl-4-pyrone; L = imidazole (Im) (complex 2), 1(N)-methylimidazole (N-MeIm) (3), 2-methylimidazole (2-MeIm) (4), and 4-methylimidazole (4-MeIm) (5), were synthesized via the known L = EtOH (complex 1a), and characterized by elemental analysis, 1H NMR and IR spectroscopies, mass spectrometry, cyclic voltammetry, and (for 3 and 4) by X-ray crystallography. The trans-[Ru(ma)2(H2O)2]CF3SO3 complex (1b) was inadvertently isolated and characterized crystallographically, and the monomaltolato species [Ru(ma)(N-MeIm)4][CF3SO3]2 (6) was also isolated and characterized. In vitro antiproliferatory activity of complexes 2−6 against human breast cancer cells (MDA-MB-435S) was tested using an MTT assay: 4 and 5 exhibit the lowest IC50 values, ~5 and ~15 µmol/L, respectively, whereas cisplatin exhibits an IC50 value of ~35 µmol/L against this cell line.
Collapse
Affiliation(s)
- David C. Kennedy
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Brian O. Patrick
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Brian R. James
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
5
|
The compound cis-(dichloro)tetrammineruthenium(III) chloride induces caspase-mediated apoptosis in K562 cells. Toxicol In Vitro 2010; 24:1562-8. [PMID: 20600797 DOI: 10.1016/j.tiv.2010.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 11/24/2022]
Abstract
Ruthenium(III) complexes are increasingly attracting the interest of researchers due to their promising pharmacological properties. In the present study, we investigated the ability of cis-(dichloro)tetrammineruthenium(III) chloride to produce lethal effects in human chronic myelogenous leukemia K562 cells. The MTT tetrazolium reduction test and the trypan blue exclusion assay revealed that the IC(50) for the compound after 48 h of incubation with K562 cells was approximately 10.74 and 73.45 microM, respectively. Interestingly, it was observed that this compound exhibits mild cytotoxicity towards MRC-5 human fibroblast cells (IC(50)>383 microM). Flow cytometric analysis revealed that cis-(dichloro)tetrammineruthenium(III) chloride was capable of change cell cycle distribution since the percentage of cells in the G1, S and G2 phases decreased. In addition, treatment with this compound induced apoptotic cell death in K562 cells, demonstrated by increased DNA content in the sub-G1-peak and a significant increase in caspase-3 activity. Assay using cyclosporin A, an inhibitor of the mitochondrial permeability transition pore (MPT) showed that the preincubation of K562 cells with this inhibitor had not effect on cis-(dichloro)tetrammineruthenium(III) chloride induced caspase-3 activation. In summary, cis-(dichloro)tetrammineruthenium(III) chloride displayed a significant cytotoxic effect through cell cycle arrest and apoptotic induction in K562 cells, which suggests that cis-(dichloro)tetrammineruthenium(III) chloride might have therapeutic potential against leukemia.
Collapse
|
6
|
Synthesis, characterization and antitumor activity of Cu(II), Co(II), Zn(II) and Mn(II) complex compounds with aminothiazole acetate derivative. OPEN CHEM 2010. [DOI: 10.2478/s11532-010-0022-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThis paper presents the synthesis of complex compounds of type [M(L1)2], where M(II)= Cu (1), Co (2), Zn (3), L1=2-aminothiazole-4-acetate and [Mn(L1)2(H2O)] (4) using ethyl 2-(2-aminothiazole-4-yl) acetate (L), and characterization by elemental analysis, magnetic susceptibilities, IR, 1H-NMR, UV-Vis spectroscopy and for [Mn(L1)2(H2O)] also by X-ray diffraction. In vitro cytotoxicity studies were performed on human cervix adenocarcinoma, HeLa cells. The antitumor selectivity was assessed using normal human peripheral blood mononuclear cells, PBMC as control.
Collapse
|