Aggarwal K, Bsoul S, Douglin JC, Li S, Dekel DR, Diesendruck C. Alkaline Stability of Low Oxophilicity Metallopolymer Anion-Exchange Membranes.
Chemistry 2021;
28:e202103744. [PMID:
34878688 DOI:
10.1002/chem.202103744]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 11/06/2022]
Abstract
Anion-exchange membrane fuel cells (AEMFCs) are promising energy conversion devices due to their high efficiency and relatively low cost. Nonetheless, AEMFC operation time is currently limited by the low chemical stability of their polymeric anion-exchange membranes. In recent years, metallopolymers, where the metal centers assume the ion transport function, have been proposed as a chemically stable alternative. Here we present a systematic study using a polymer backbone with side-chain N-heterocyclic carbene (NHC) ligands complexed to various metals with low oxophilicity, such as copper, zinc, nickel, and gold. The golden metallopolymer, using the metal with the lowest oxophilicity, demonstrates exceptional alkaline stability, far superior to state-of-the-art quaternary ammonium cations, as well as good in-situ AEMFC results. These results demonstrate that judiciously designed metallopolymers may be superior to purely organic membranes and provides a scientific base for further developments in the field.
Collapse