1
|
Orlova A, Bernbeck MG, Rinehart JD. Designing Quantum Spaces of Higher Dimensionality from a Tetranuclear Erbium-Based Single-Molecule Magnet. J Am Chem Soc 2024; 146:23417-23425. [PMID: 39106366 PMCID: PMC11345759 DOI: 10.1021/jacs.4c06600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
The spin relaxation of an Er3+ tetranuclear single-molecule magnet, [Er(hdcCOT)I]4, (hdcCOT = hexahydrodicyclopentacyclooctatetraenide dianion), is modeled as a near-tetrahedral arrangement of Ising-type spins. Combining evidence from single-crystal X-ray diffraction, magnetometry, and computational techniques, the slow spin relaxation is interpreted as a consequence of symmetry restrictions imposed on quantum tunneling within the cluster core. The union of spin and spatial symmetries describe a ground state spin-spin coupled manifold wherein 16 eigenvectors generate the 3D quantum spin-space described by the vertices of a rhombic dodecahedron. Analysis of the experimental findings in this context reveals a correlation between the magnetic transitions and edges connecting cubic and octahedral subsets of the eigenspace convex hull. Additionally, the model is shown to map to a theoretically proposed quantum Cayley network, indicating an underexplored synergy between mathematical descriptions of molecular spin interactions and quantum computing configuration spaces.
Collapse
Affiliation(s)
- Angelica
P. Orlova
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | | | - Jeffrey D. Rinehart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Koroteev PS, Dobrokhotova ZV, Ilyukhin AB, Belova EV, Yapryntsev AD, Rouzières M, Clérac R, Efimov NN. Tetranuclear Cr-Ln ferrocenecarboxylate complexes with a defect-dicubane structure: synthesis, magnetism, and thermolysis. Dalton Trans 2021; 50:16990-16999. [PMID: 34612322 DOI: 10.1039/d1dt02562g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using ferrocenecarboxylic acid (FcCO2H) and triethanolamine (H3tea) as ligands, the isostructural heterotrimetallic complexes [LnIII2CrIII2(OH)2(FcCO2)4(NO3)2(Htea)2]·2MePh·2THF (Ln = Tb (1), Dy (2), Ho (3), Er (4), and Y (5); Fc = (η5-C5H4)(η5-C5H5)Fe; H3tea = N(CH2CH2OH)3) were obtained. In all of the complexes which possess a defective dicubane structure, two doubly deprotonated triethanolamine ligands chelate the chromium ions. However, during the synthesis of 1, an isomeric complex 1a in which Tb3+ is chelated by triethanolamine as a tetradentate ligand, was also isolated as a few single crystals. Magnetic susceptibility measurements revealed dominant antiferromagnetic interactions in the {LnIII2CrIII2} cores of 1-4 leading to the formation of complexes with an uncompensated magnetic moment, while weak Cr-Cr ferromagnetic interactions were detected in the Y analogue. Complexes 1, 2, and 3 exhibit single-molecule magnet properties dominated by an Orbach-type relaxation mechanism with magnetization reversal barriers (Δ/kB) estimated around 54, 75, and 47 K, respectively. The Dy complex exhibits a magnetization hysteresis in an applied magnetic field at temperatures below 4 K. Thermolysis of the complexes was studied by TGA and DSC techniques; the final products obtained under an air atmosphere contain mixed oxide Cr0.75Fe1.25O3 and heterotrimetallic oxide LnCr1-xFexO3 (with x ≈ 0.75) phases.
Collapse
Affiliation(s)
- Pavel S Koroteev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prosp. 31, 119991 Moscow, Russian Federation.
| | - Zhanna V Dobrokhotova
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prosp. 31, 119991 Moscow, Russian Federation.
| | - Andrey B Ilyukhin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prosp. 31, 119991 Moscow, Russian Federation.
| | - Ekaterina V Belova
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prosp. 31, 119991 Moscow, Russian Federation. .,Lomonosov Moscow State University, Department of Chemistry, GSP-1, Leninskie Gory 1/3, 119991 Moscow, Russian Federation
| | - Alexey D Yapryntsev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prosp. 31, 119991 Moscow, Russian Federation.
| | - Mathieu Rouzières
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600 Pessac, France.
| | - Rodolphe Clérac
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600 Pessac, France.
| | - Nikolay N Efimov
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prosp. 31, 119991 Moscow, Russian Federation.
| |
Collapse
|
3
|
Wang Y, Du C, Zhao L, Zhang X, Wang D, Sha J, Zhang H. Two hexanuclear [Co2III-Ln4III] clusters including a [Co2III-Dy4III] single molecule magnet. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Zhang K, Li GP, Montigaud V, Cador O, Le Guennic B, Tang J, Wang YY. Tetranuclear dysprosium single-molecule magnets: tunable magnetic interactions and magnetization dynamics through modifying coordination number. Dalton Trans 2019; 48:2135-2141. [PMID: 30667435 DOI: 10.1039/c8dt05004j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The study of mononuclear lanthanide-based systems, where the observed Single Molecule Magnets (SMMs) properties originate from the local magnetic anisotropy of the single lanthanide ion, has been extensively investigated in the literature. The case for polynuclear lanthanide SMMs becomes more challenging both experimentally and theoretically due to the complexity of such architectures involving interactions between the magnetic centers. Much interest was devoted to the study of the structural effect on the magnetic interactions and relaxation dynamics. However, the understanding of the structural influence on those two factors remains a difficult task. To address this issue, a system containing two structurally related tetranuclear Dy(iii) SMMs, namely [Dy4(L)4(OH)2(DMF)4(NO3)2]·2(DMF)·(H2O) (1) and [Dy4(L)4(OH)2(DMF)2(NO3)2] (2) (H2L = 2-(2-hydroxy-3-methoxybenzylideneamino)phenol), is introduced and investigated. Through modifying the ligands on the changeable coordination sites, the intramolecular magnetic interactions and relaxation dynamics in these two Dy(iii)4 SMMs can be tuned. Both complexes exhibit slow relaxation of their magnetization with a relaxation barrier of 114 K for complex 2 while a blocking temperature below 2 K is observed for complex 1. Ab initio calculations reveal that changes in coordination numbers and geometries on the Dy(iii) sites can significantly affect the magnetic interactions as well as single-ion anisotropy. The combination of experimental work and ab initio calculations offers insight into the relationship between structures and magnetic properties and sheds light on the rational design of future polynuclear lanthanide SMMs with enhanced magnetic properties.
Collapse
Affiliation(s)
- Kun Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
5
|
Zhang K, Montigaud V, Cador O, Li GP, Le Guennic B, Tang JK, Wang YY. Tuning the Magnetic Interactions in Dy(III)4 Single-Molecule Magnets. Inorg Chem 2018; 57:8550-8557. [DOI: 10.1021/acs.inorgchem.8b01269] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kun Zhang
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, PR China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127, PR China
| | - Vincent Montigaud
- Université Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Olivier Cador
- Université Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Gao-Peng Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127, PR China
| | - Boris Le Guennic
- Université Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Jin-Kui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127, PR China
| |
Collapse
|
6
|
Machata M, Nemec I, Herchel R, Trávníček Z. An octanuclear Schiff-base complex with a Na2Ni6 core: structure, magnetism and DFT calculations. RSC Adv 2017. [DOI: 10.1039/c7ra01374d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An octanuclear complex with a Na2Ni6 core was prepared and characterized. Its magnetic properties were thoroughly studied by experimental and theoretical methods.
Collapse
Affiliation(s)
- Marek Machata
- Department of Inorganic Chemistry
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University
- CZ-771 46 Olomouc
| | - Ivan Nemec
- Department of Inorganic Chemistry
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University
- CZ-771 46 Olomouc
| | - Radovan Herchel
- Department of Inorganic Chemistry
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University
- CZ-771 46 Olomouc
| | - Zdeněk Trávníček
- Department of Inorganic Chemistry
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University
- CZ-771 46 Olomouc
| |
Collapse
|
7
|
Bao DX, Xiang S, Wang J, Li YC, Zhao XQ. Review: Single-molecule magnets based on pyridine alcohol ligands. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1231301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Dong-Xu Bao
- College of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Shuo Xiang
- College of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Jin Wang
- College of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Yun-Chun Li
- College of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Xiao-Qing Zhao
- College of Science, Sichuan Agricultural University, Ya’an, PR China
| |
Collapse
|
8
|
Wang Y, Wen M, Gao Z, Sheng N. Crystal structure and magnetic properties of a linear tetranuclear Co IIcluster. Acta Crystallogr C 2016; 72:697-700. [DOI: 10.1107/s205322961601281x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/09/2016] [Indexed: 11/11/2022] Open
Abstract
Polynuclear complexes are an important class of inorganic functional materials and are of interest particularly for their applications in molecular magnets. Multidentate chelating ligands play an important role in the design and syntheses of polynuclear metal clusters. A novel linear tetranuclear CoIIcluster, namely bis{μ3-(E)-2-[(2-oxidobenzylidene)amino]phenolato}bis{μ2-(E)-2-[(2-oxidobenzylidene)amino]phenolato}bis(1,10-phenanthroline)tetracobalt(II), [Co4(C14H11NO2)4(C12H8N2)2], was prepared under solvothermal conditions through a mixed-ligand synthetic strategy. The structure was determined by X-ray single-crystal diffraction and bulk purity was confirmed by powder X-ray diffraction. The complex molecule has a centrosymmetric tetranuclear chain-like structure and the four CoIIions are located in two different coordination environments. The CoIIions at the ends of the chain are in a slightly distorted octahedral geometry, while the two inner CoIIions are in five-coordinate distorted trigonal bipyramidal environments. A magnetic study reveals ferromagnetic CoII...CoIIexchange interactions for the complex.
Collapse
|
9
|
Zhang H, Liu R, Zhang J, Li Y, Liu W. Chair-like [LnIII4CoIII2] (Ln = Dy, Eu, Gd, Tb) clusters including a [DyIII4CoIII2] single molecule magnet. CrystEngComm 2016. [DOI: 10.1039/c6ce01589a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Zhang J, Zhang H, Chen Y, Zhang X, Li Y, Liu W, Dong Y. A series of dinuclear lanthanide complexes with slow magnetic relaxation for Dy2 and Ho2. Dalton Trans 2016; 45:16463-16470. [DOI: 10.1039/c6dt02962k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Seven dinuclear complexes [Ln2L2(C2H5OH)2(NO3)2]·0.5py were prepared and characterized; complex 4 exhibits SMM behavior with a Ueff value of 66.7 K.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Haifeng Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Yanmei Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Xiangfei Zhang
- Key Laboratory of Salt Lake Resources and Chemistry
- Qinghai Institute of Salt Lakes
- Chinese Academy of Sciences
- Xining 810008
- P. R. China
| | - Yahong Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Wei Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Yaping Dong
- Key Laboratory of Salt Lake Resources and Chemistry
- Qinghai Institute of Salt Lakes
- Chinese Academy of Sciences
- Xining 810008
- P. R. China
| |
Collapse
|