Photoantimicrobial activity of Schiff-base Morpholino phthalocyanines against drug resistant micro-organisms in their planktonic and biofilm forms.
Photodiagnosis Photodyn Ther 2023;
42:103519. [PMID:
36931368 DOI:
10.1016/j.pdpdt.2023.103519]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Antimicrobial photodynamic inactivation (aPDI) is an alternative treatment for the eradication of drug-resistant micro-organisms. One of the advantages of this technique, it that there is no possibility of microbial resistance. Hence, herein, the preparation and characterization of novel neutral and cationic morpholine containing Schiff base phthalocyanines are reported. The cationic complexes (4 and 5) gave moderate singlet oxygen quantum yields (ΦΔ) of ∼0.2 in aqueous media. Conversely, the neutral complexes generated very low ΦΔ values making them very poor candidates for antimicrobial studies. The cationic phthalocyanines showed excellent photodynamic activity against planktonic cells of all micro-organisms (Candida albicans, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella enterica subspecies enterica serovar Choleraesuis, vancomycin-resistant E. faecium, and methicillin-resistant Staphylococcus aureus). The efficiency of aPDI was shown to be both concentration and light-dose-dependent. Mono biofilms were susceptible when treated with 200 µM of cationic Pcs at 108 J/cm2. However, ∼10% of the mixed biofilm survived after treatment.
Collapse