1
|
Wang PZ, Chen JR, Xiao WJ. Emerging Trends in Copper-Promoted Radical-Involved C-O Bond Formations. J Am Chem Soc 2023; 145:17527-17550. [PMID: 37531466 DOI: 10.1021/jacs.3c04879] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The C-O bond is ubiquitous in biologically active molecules, pharmaceutical agents, and functional materials, thereby making it an important functional group. Consequently, the development of C-O bond-forming reactions using catalytic strategies has become an increasingly important research topic in organic synthesis because more conventional methods involving strong base and acid have many limitations. In contrast to the ionic-pathway-based methods, copper-promoted radical-mediated C-O bond formation is experiencing a surge in research interest owing to a renaissance in free-radical chemistry and photoredox catalysis. This Perspective highlights and appraises state-of-the-art techniques in this burgeoning research field. The contents are organized according to the different reaction types and working models.
Collapse
Affiliation(s)
- Peng-Zi Wang
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| | - Wen-Jing Xiao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Gonzálvez MA, Williams CM, Martínez M, Bernhardt PV. Kinetico-Mechanistic Studies on a Reactive Organocopper(II) Complex: Cu-C Bond Homolysis versus Heterolysis. Inorg Chem 2023; 62:4662-4671. [PMID: 36877141 DOI: 10.1021/acs.inorgchem.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Organocopper(II) reagents are an unexplored frontier of copper catalysis. Despite being proposed as reactive intermediates, an understanding of the stability and reactivity of the CuII-C bond has remained elusive. Two main pathways can be considered for the cleavage mode of a CuII-C bond: homolysis and heterolysis. We recently showed how organocopper(II) reagents can react with alkenes via radical addition, a homolytic pathway. In this work, the decomposition of the complex [CuIILR]+ [L = tris(2- dimethylaminoethyl)amine, Me6tren, R = NCCH2-] in the absence and presence of an initiator (RX, X = Cl, Br) was evaluated. When no initiator was present, first-order CuII-C bond homolysis occurred producing [CuIL]+ and succinonitrile, via radical termination. When an excess of the initiator was present, a subsequent formation of [CuIILX]+ via a second-order reaction was found, which results from the reaction of [CuIL]+ with RX following homolysis. However, when Brønsted acids (R'-OH: R' = H, Me, Ph, PhCO) were present, heterolytic cleavage of the CuII-C bond produced [CuIIL(OR')]+ and MeCN. Kinetic studies were undertaken to obtain the thermal (ΔH⧧, ΔS⧧) and pressure (ΔV⧧) activation parameters and deuterium kinetic isotopic effects, which provided an understanding of the strength of the CuII-C bond and the nature of the transition state for the reactions involved. These results reveal possible reaction pathways for organocopper(II) complexes relevant to their applications as catalysts in C-C bond forming reactions.
Collapse
Affiliation(s)
- Miguel A Gonzálvez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Manuel Martínez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
3
|
Dong XY, Li ZL, Gu QS, Liu XY. Ligand Development for Copper-Catalyzed Enantioconvergent Radical Cross-Coupling of Racemic Alkyl Halides. J Am Chem Soc 2022; 144:17319-17329. [PMID: 36048164 DOI: 10.1021/jacs.2c06718] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The enantioconvergent cross-coupling of racemic alkyl halides represents a powerful tool for the synthesis of enantioenriched molecules. In this regard, the first-row transition metal catalysis provides a suitable mechanism for stereoconvergence by converting racemic alkyl halides to prochiral radical intermediates owing to their good single-electron transfer ability. In contrast to the noble development of chiral nickel catalyst, copper-catalyzed enantioconvergent radical cross-coupling of alkyl halides is less studied. Besides the enantiocontrol issue, the major challenge arises from the weak reducing capability of copper that slows the reaction initiation. Recently, significant efforts have been dedicated to basic research aimed at developing chiral ligands for copper-catalyzed enantioconvergent radical cross-coupling of racemic alkyl halides. This perspective will discuss the advances in this burgeoning area with particular emphasis on the strategic chiral anionic ligand design to tune the reducing capability of copper for the reaction initiation under thermal conditions from our research group.
Collapse
Affiliation(s)
- Xiao-Yang Dong
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Tripodal Heptadentate Amine Ligands with Different Nitrogen Substituents for SARA- and Photo-ATRP. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
|
6
|
Yardeni G, Meyerstein D, Mikhailovich-Jivin E, Kats L, Cohen H, Zilbermann I, Maimon E. The reactions of the Cu(II)-nitrilotris(methylenephosphonic acid) complex with alkyl radicals in aqueous solutions. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Yardeni G, Meyerstein D, Kats L, Cohen H, Zilbermann I, Maimon E. On the reactions of methyl radicals with nitrilotris(methylenephosphonic-acid) complexes in aqueous solutions. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1698736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Guy Yardeni
- Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
| | - Dan Meyerstein
- Chemical Sciences Department, The Radical Research Centre and the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications, Ariel University, Ariel, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lioubov Kats
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Haim Cohen
- Chemical Sciences Department, The Radical Research Centre and the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications, Ariel University, Ariel, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Israel Zilbermann
- Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eric Maimon
- Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
8
|
Affiliation(s)
- Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213 United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213 United States
| |
Collapse
|
9
|
Thevenin L, Fliedel C, Matyjaszewski K, Poli R. Impact of Catalyzed Radical Termination (CRT) and Reductive Radical Termination (RRT) in Metal‐Mediated Radical Polymerization Processes. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lucas Thevenin
- CNRS LCC (Laboratoire de Chimie de Coordination) Université de Toulouse UPS, INPT 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| | - Christophe Fliedel
- CNRS LCC (Laboratoire de Chimie de Coordination) Université de Toulouse UPS, INPT 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue 15213 Pittsburgh PA United States
| | - Rinaldo Poli
- CNRS LCC (Laboratoire de Chimie de Coordination) Université de Toulouse UPS, INPT 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| |
Collapse
|
10
|
Fantin M, Lorandi F, Ribelli TG, Szczepaniak G, Enciso AE, Fliedel C, Thevenin L, Isse AA, Poli R, Matyjaszewski K. Impact of Organometallic Intermediates on Copper-Catalyzed Atom Transfer Radical Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00870] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Thomas G. Ribelli
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan E. Enciso
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Christophe Fliedel
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
| | - Lucas Thevenin
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
| | - Abdirisak A. Isse
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
- Institut Universitaire de France, 1 Rue Descartes, 75231 Paris Cedex 05, France
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
11
|
Thevenin L, Fliedel C, Fantin M, Ribelli TG, Matyjaszewski K, Poli R. Reductive Termination of Cyanoisopropyl Radicals by Copper(I) Complexes and Proton Donors: Organometallic Intermediates or Coupled Proton–Electron Transfer? Inorg Chem 2019; 58:6445-6457. [DOI: 10.1021/acs.inorgchem.9b00660] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucas Thevenin
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, BP 44099, F-31077, Toulouse Cedex 4, France
| | - Christophe Fliedel
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, BP 44099, F-31077, Toulouse Cedex 4, France
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Thomas G. Ribelli
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, BP 44099, F-31077, Toulouse Cedex 4, France
- Institut Universitaire de France, 1, rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|