1
|
Malik NA, Nazir N, Manzoor M, Gull F. Fungicide-albumin interactions: unraveling the complex relationship-a comprehensive review. Biophys Rev 2024; 16:417-439. [PMID: 39309131 PMCID: PMC11415336 DOI: 10.1007/s12551-024-01190-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/03/2024] [Indexed: 09/25/2024] Open
Abstract
This review will give an insight into the interactions of serum albumins, which are proteins found in the blood, with fungicides. There are molecular interactions between several fungicides and two serum albumin proteins: human serum albumin (HSA) and bovine serum albumin (BSA). The main objective of this review is to through some light on the interactions of the fungicides with serum albumins and to highlight their toxicity level. The interactions of serum albumins with fungicides are complex and can be affected by the properties of the proteins themselves. This review provides valuable insight into the interactions between serum albumins and fungicides, which can help to know the efficacy and mechanism of fungicides and may help in designing new fungicides with low or no toxicity.
Collapse
Affiliation(s)
- Nisar Ahmad Malik
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Pulwama, Jammu and Kashmir India
| | - Nighat Nazir
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Pulwama, Jammu and Kashmir India
| | - Mehak Manzoor
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Pulwama, Jammu and Kashmir India
| | - Faizan Gull
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Pulwama, Jammu and Kashmir India
| |
Collapse
|
2
|
Cai DH, Liang BF, Chen BH, Liu QY, Pan ZY, Le XY, He L. A novel water-soluble Cu(II) gluconate complex inhibits cancer cell growth by triggering apoptosis and ferroptosis related mechanisms. J Inorg Biochem 2023; 246:112299. [PMID: 37354603 DOI: 10.1016/j.jinorgbio.2023.112299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Metal copper complexes have attracted extensive attention as potential alternatives to platinum-based anticancer drugs due to their possible different modes of action. Herein, a new copper(II) gluconate complex, namely [Cu(DPQ)(Gluc)]·2H2O (CuGluc, DPQ = pyrazino[2,3-f][1,10]phenanthroline), with good water-solubility and high anticancer activity was synthesized by using D-gluconic acid (Gluc-2H) as an auxiliary ligand. The complex was well characterized by single-crystal X-ray diffraction analysis, elemental analysis, molar conductivity, and Fourier transform infrared spectroscopy (FTIR). The DNA-binding experiments revealed that CuGluc was bound to DNA by intercalation with end-stacking binding. CuGluc could oxidatively cleave DNA, in which 1O2 and H2O2 were involved. In addition, CuGluc was bound to the IIA subdomain of human serum albumin (HSA) through hydrophobic interaction and hydrogen bonding, showing a good affinity for HSA. The complex showed superior anticancer activity toward several cancer cells than cisplatin in vitro. Further studies indicated that CuGluc caused apoptotic cell death in human liver cancer (HepG2) cells through elevated intracellular reactive oxygen species (ROS) levels, mitochondrial dysfunction, cell cycle arrest, and caspase activation. Interestingly, CuGluc also triggered the ferroptosis mechanism through lipid peroxide accumulation and inhibition of glutathione peroxidase 4 (GPX4) activity. More importantly, CuGluc significantly inhibited tumor growth in vivo, which may benefit from the combined effects of apoptosis and ferroptosis. This work provides a promising strategy to develop highly effective antitumor copper complexes by coordinating with the glucose metabolite D-gluconic acid and exploiting the synergistic effects of apoptosis and ferroptosis mechanisms.
Collapse
Affiliation(s)
- Dai-Hong Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Bin-Fa Liang
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Bai-Hua Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Qi-Yan Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zheng-Yin Pan
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Xue-Yi Le
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Liang He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Divyashree NR, Revanasiddappa HD, Bhavya NR, Mahendra M, Jayalakshmi B, Shivamallu C, Prasad Kollur S. Azaneylylidene-based tetradentate Schiff base as a new "ON-OFF" fluorescent probe for the detection of Cu(II) ion: Synthesis, characterization and real sample analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122435. [PMID: 36758319 DOI: 10.1016/j.saa.2023.122435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Herein we describe the synthesis of Cu2+ sensor, 2,2'-((1E,1'E)-((4-chloro-1,2-phenylene)bis(azaneylylidene))bis(methane-ylylidene))bis(4-bromophenol) (CPMB) and characterization using various spectral and analytical techniques. CPMB exhibited high selectivity towards Cu2+ ions via fluorescence quenching mechanism, which combined the character of high selectivity towards Cu2+ assay even in the presence of other common metal ions such as Cu2+, Al3+, Co2+, Ni2+, Mn2+, Zn2+ Pb2+ Cd2+, Fe2+, Hg2+, Mg2+ and Fe3+ (30 μM) ethanol-water (1:9 v/v) system. Upon the addition of the solution of Cu2+ ions to CPMB, the complexation of Cu2+ with CPMB leads to the immediate formation of light green color, indicating that CPMB can act as simple colorimetric sensor, particularly for Cu2+ in the presence of most interfering metal ions in ethanol-water medium. More interestingly, the ability of sensing behavior of CPMB for Cu2+ ion in the real water samples (tap water and lake water samples) was also investigated. Further, Job's plot confirmed that the complexation occurred in 1:1 ratio (ligand:metal). Furthermore, the fluorescence inhibiting factor showed a good linear relationship with the concentration of Cu2+ with detection limit of 0.302 μM. The electronic transitions of the complex in ethanol were studied using DFT calculations.
Collapse
Affiliation(s)
- N R Divyashree
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka 570 006, India
| | - H D Revanasiddappa
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka 570 006, India.
| | - N R Bhavya
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, Karnataka 570 006, India; Department of Studies in Physics, Vidyavardhaka College of Engineering, Mysore, 570 002 Karnataka, India
| | - M Mahendra
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, Karnataka 570 006, India
| | - B Jayalakshmi
- Department of Botany, Government College for Women (Autonomous), Mandya 571 401, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru 570015, Karnataka, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka 570 026, India
| |
Collapse
|
4
|
Pokidova OV, Emel'yanova NS, Kormukhina AY, Novikova VO, Kulikov AV, Kotelnikov AI, Sanina NA. Albumin as a prospective carrier of the nitrosyl iron complex with thiourea and thiosulfate ligands under aerobic conditions. Dalton Trans 2022; 51:6473-6485. [PMID: 35394482 DOI: 10.1039/d2dt00291d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High-molecular-weight dinitrosyl iron complexes (DNICs) are formed in living systems and are a stable depot of nitrogen monoxide (NO). In this work, using experimental and theoretical methods, we investigated the interaction of their synthetic analog, a promising cardiotropic complex of the composition [Fe(SC(NH2)2)2(NO)2]2[Fe2(S2O3)2(NO)4], with bovine serum albumin (BSA) in aqueous aerobic solutions. We suggested that, under these conditions, the decomposition product of the initial complex with oxygen, the [Fe(NO)(NO2)]+ fragment, can bind in the hydrophobic pocket of the protein. As a result of this interaction, high-molecular-weight Fe(Cys34)(His39)(NO)(NO2) is formed. The binding constant of the complex with protein measured by the quenching of intrinsic fluorescence of BSA is 7.2 × 105 M-1. According to EPR and UV-spectroscopy data, the interaction of the complex with the protein leads to its significant stabilization. In addition to coordination binding, the studied complex can be adsorbed onto the protein surface due to weak intermolecular interactions, resulting in the prolonged generation of NO.
Collapse
Affiliation(s)
- Olesya V Pokidova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Acad. Semenova, 142432 Chernogolovka, Moscow Region, Russian Federation.
| | - Nina S Emel'yanova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Acad. Semenova, 142432 Chernogolovka, Moscow Region, Russian Federation. .,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russian Federation
| | - Alexandra Yu Kormukhina
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russian Federation
| | - Veronika O Novikova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Acad. Semenova, 142432 Chernogolovka, Moscow Region, Russian Federation.
| | - Alexander V Kulikov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Acad. Semenova, 142432 Chernogolovka, Moscow Region, Russian Federation. .,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russian Federation
| | - Alexander I Kotelnikov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Acad. Semenova, 142432 Chernogolovka, Moscow Region, Russian Federation. .,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russian Federation
| | - Natalia A Sanina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Acad. Semenova, 142432 Chernogolovka, Moscow Region, Russian Federation. .,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russian Federation.,Scientific and Educational Center "Medical Chemistry" of Moscow State Regional University, 24 Vera Voloshina St., 141014 Mytishchi, Moscow Region, Russian Federation
| |
Collapse
|
5
|
Karmakar J, Pramanik A, Joseph V, Marks V, Grynszpan F, Levine M. A dipodal bimane-ditriazole-diCu(II) complex serves as an ultrasensitive water sensor. Chem Commun (Camb) 2022; 58:2690-2693. [PMID: 35108349 DOI: 10.1039/d1cc07138f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An ultrasensitive fluorescent water sensor based on a dipodal bimane-Cu(II) complex is reported here. This complex, which is non-fluorescent in the absence of water, demonstrates a remarkable turn-on fluorescence in the presence of extremely low (0.000786% v/v) concentrations of water, via highly selective water-induced displacement of copper and restoration of the innate bimane fluorescence.
Collapse
Affiliation(s)
- Joy Karmakar
- Department of Chemical Sciences, Ariel University, Ariel, Israel.
| | - Apurba Pramanik
- Department of Chemical Sciences, Ariel University, Ariel, Israel.
| | - Vincent Joseph
- Department of Chemical Sciences, Ariel University, Ariel, Israel.
| | - Vered Marks
- Department of Chemical Sciences, Ariel University, Ariel, Israel.
| | - Flavio Grynszpan
- Department of Chemical Sciences, Ariel University, Ariel, Israel.
| | - Mindy Levine
- Department of Chemical Sciences, Ariel University, Ariel, Israel.
| |
Collapse
|
6
|
Cai DH, Chen BH, Liu QY, Le XY, He L. Synthesis, structural studies, interaction with DNA/HSA and antitumor evaluation of new Cu( ii) complexes containing 2-(1 H-imidazol-2-yl)pyridine and amino acids. Dalton Trans 2022; 51:16574-16586. [DOI: 10.1039/d2dt02985e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New Cu(ii) complexes with promising anticancer activity induce apoptosis in HepG2 cells through DNA damage and cytotoxic ROS-mediated mitochondrial dysfunction pathways.
Collapse
Affiliation(s)
- Dai-Hong Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642, China
| | - Bai-Hua Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642, China
| | - Qi-Yan Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642, China
| | - Xue-Yi Le
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642, China
| | - Liang He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Pokidova OV, Kormukhina AY, Kotelnikov AI, Rudneva TN, Lyssenko KA, Sanina NA. Features of the decomposition of cationic nitrosyl iron complexes with N-ethylthiourea and penicillamine ligands in the presence of albumin. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Liao T, Zhang Y, Huang X, Jiang Z, Tuo X. Multi-spectroscopic and molecular docking studies of human serum albumin interactions with sulfametoxydiazine and sulfamonomethoxine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119000. [PMID: 33032113 DOI: 10.1016/j.saa.2020.119000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Sulfonamides are a kind of antibiotics which have been widely used as feed additives for livestock and poultry. However, sulfa drugs have raised worldwide concerns because of their adverse impact on human health. In this study, two sulfonamides, sulfametoxydiazine (SMD) and sulfamonomethoxine (SMM), were selected to explore the binding modes with human serum albumin (HSA). The spectroscopic approaches revealed that SMD or SMM could spontaneously enter into the binding site I of HSA through hydrogen bond interactions and van der Waals forces, and that SMD exhibited much stronger binding affinity toward HSA than SMM at different temperatures (p < 0.01, n = 3). The binding constants for SMD-HSA and SMM-HSA were determined to be (8.297 ± 0.010) × 104 L·mol-1 and (1.178 ± 0.008) × 104 L·mol-1 at 298 K, respectively. The interaction of SMD or SMM to HSA induced microenvironmental and conformational changes in HSA, where SMD had a greater effect on the α-helix content of HSA. Results from molecular docking implied that the amino acid residues of HSA, such as Arg222, Ala291 and Leu238, played key roles in the sulfonamide-HSA binding process. Meanwhile, hydrogen bonds might be a key factor contributing to the binding affinity of sulfa drugs and HSA. Additionally, the combined use of SMD and SMM led to an obvious variation in Ka values of binary systems (p < 0.01, n = 3). These findings might be helpful to understand the biological effects of sulfonamides in humans.
Collapse
Affiliation(s)
- Tancong Liao
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yuai Zhang
- NanChang BO ZE KANG Pharmaceutical Technology Co., LTD, Nanchang 330000, Jiangxi, China
| | - Xiaojian Huang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Zheng Jiang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xun Tuo
- Basic Chemistry Experiment Center, College of Chemistry, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
9
|
Kwan CS, Wang T, Chan SM, Cai Z, Leung KCF. Selective detection of sulfide in human lung cancer cells with a blue-fluorescent "ON-OFF-ON" benzimidazole-based chemosensor ensemble. Dalton Trans 2020; 49:5445-5453. [PMID: 32266905 DOI: 10.1039/d0dt00031k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A completely water-soluble, high quantum yield blue-fluorescent benzimidazole derivative (AQ), containing a rigid benzimidazole-thiophene structure, was synthesized. Among 21 metal ions, the fluorescence of AQ was selectively turned off by Cu2+ to form an AQ-Cu2+ ensemble. Thereafter, the fluorescence of the AQ-Cu2+ ensemble was turned on by sulfide (S2-) with high selectivity and sensitivity in pure water solution. In comparison with AQ-Ag+ and AQ-Hg2+ ensembles, AQ-Cu2+ was the only ensemble that was capable of detecting a sulfide anion. Also, the fluorescence intensity of AQ was linearly proportional to the concentration of Cu2+ and S2-. Both Cu2+ and S2- were detected within a minute in vitro. Moreover, AQ worked best in the pH range of 5-10 and had a limit of detection of 50 nM and 354 nM for Cu2+ and S2- respectively. It was employed for the detection of sulfide in human lung cancer A549 cells with low cytotoxicity.
Collapse
Affiliation(s)
- Chak-Shing Kwan
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| | | | | | | | | |
Collapse
|
10
|
Pokidova ОV, Luzhkov VB, Emel'yanova NS, Krapivin VB, Kotelnikov AI, Sanina NA, Aldoshin SM. Effect of albumin on the transformation of dinitrosyl iron complexes with thiourea ligands. Dalton Trans 2020; 49:12674-12685. [DOI: 10.1039/d0dt02452j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BSA binds the Fe(NO)2+ fragment of DNIC and multiple molecules of [Fe(SC(NH2)2)2(NO)2]+ that prolongs NO donation by this DNIC.
Collapse
Affiliation(s)
- Оlesya V. Pokidova
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
| | - Victor B. Luzhkov
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Nina S. Emel'yanova
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Vladimir B. Krapivin
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
| | - Alexander I. Kotelnikov
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Natalia A. Sanina
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Sergey M. Aldoshin
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| |
Collapse
|