2
|
Castro J, Bravo M, Albertí M, Marsal A, Alonso-De Gennaro MJ, Martínez-Ferraté O, Claver C, van Leeuwen PWNM, Romero I, Benito A, Vilanova M. Dinuclear Iron Complexes of Iminopyridine-Based Ligands as Selective Cytotoxins for Tumor Cells and Inhibitors of Cancer Cell Migration. Pharmaceutics 2022; 14:2801. [PMID: 36559294 PMCID: PMC9781652 DOI: 10.3390/pharmaceutics14122801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
A family of dinuclear iron (II) compounds with iminopyridine-based ligands displays selective cytotoxic activity against cancer cell lines. All compounds have IC50 values 2-6 fold lower than that of cisplatin, and 30-90 fold lower than that of carboplatin for the tumor cell lines assayed. Comparing the IC50 values between tumor and non-tumor cell lines, the selectivity indexes range from 3.2 to 34, compound 10, [Fe2(4)2(CH3CN)4](BF4)4, showing the highest selectivity. Those compounds carrying substituents on the iminopyridine ring show the same cytotoxicity as those without substituents. However, the electronic effects of the substituents on position 6 may be important for the cytotoxicity of the complexes, and consequently for their selectivity. All compounds act over DNA, promoting cuts on both strands in the presence of reactive oxygen species. Since compound 10 presented the highest selectivity, its cytotoxic effect was further characterized. It induces apoptosis, affects cell cycle phase distribution in a cell-dependent manner, and its cytotoxic effect is linked to reactive oxygen species generation. In addition, it decreases tumor cell migration, showing potential antimetastatic effects. These properties make compound 10 a good lead antitumor agent among all compounds studied here.
Collapse
Affiliation(s)
- Jessica Castro
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, C/Maria Aurèlia Capmany, 40, 17003 Girona, Spain
- Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta, Parc Hospitalari Martí i Julià—Edifici M2 C/Dr. Castany s/n, 17190 Salt Girona, Spain
| | - Marlon Bravo
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, C/Maria Aurèlia Capmany, 40, 17003 Girona, Spain
| | - Meritxell Albertí
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, C/Maria Aurèlia Capmany, 40, 17003 Girona, Spain
| | - Anaís Marsal
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, C/Maria Aurèlia Capmany, 40, 17003 Girona, Spain
| | - María José Alonso-De Gennaro
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, C/Maria Aurèlia Capmany, 40, 17003 Girona, Spain
| | - Oriol Martínez-Ferraté
- Departament de Quimica Física e Inorgànica, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Spain
- Institut Català d’Investigació Química (ICIQ), Avinguda dels Països Catalans, 16, 43007 Tarragona, Spain
| | - Carmen Claver
- Departament de Quimica Física e Inorgànica, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Spain
| | - Piet W. N. M. van Leeuwen
- Institut Català d’Investigació Química (ICIQ), Avinguda dels Països Catalans, 16, 43007 Tarragona, Spain
| | - Isabel Romero
- Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, Campus de Montilivi, C/Maria Aurèlia Capmany, 69, 17003 Girona, Spain
| | - Antoni Benito
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, C/Maria Aurèlia Capmany, 40, 17003 Girona, Spain
- Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta, Parc Hospitalari Martí i Julià—Edifici M2 C/Dr. Castany s/n, 17190 Salt Girona, Spain
| | - Maria Vilanova
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, C/Maria Aurèlia Capmany, 40, 17003 Girona, Spain
- Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta, Parc Hospitalari Martí i Julià—Edifici M2 C/Dr. Castany s/n, 17190 Salt Girona, Spain
| |
Collapse
|
3
|
Sanina NA, Kozub GI, Kondrat'eva TA, Korchagin DV, Shilov GV, Morgunov RB, Ovanesyan NS, Kulikov AV, Stupina TS, Terent'ev AA, Aldoshin SM. Anionic dinitrosyl iron complexes – new nitric oxide donors with selective toxicity to human glioblastoma cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Bouché M, Hognon C, Grandemange S, Monari A, Gros PC. Recent advances in iron-complexes as drug candidates for cancer therapy: reactivity, mechanism of action and metabolites. Dalton Trans 2020; 49:11451-11466. [PMID: 32776052 DOI: 10.1039/d0dt02135k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this perspective, we discuss iron-complexes as drug candidates that are promising alternatives to conventional platinum-based chemotherapies owing to their broad range of reactivities and to the targeting of different biological systems. Breakthroughs in the comprehension of iron complexes' structure-activity relationship contributed to the clarification of their metabolization pathways, sub-cellular localization and influence on iron homeostasis, while enlightening the primary molecular targets of theses likely multi-target metallodrugs. Both the antiproliferative activity and elevated safety index observed among the family of iron complexes showed encouraging results as per their therapeutic potential and selectivity also with the aim of reducing chemotherapy side-effects, and facilitated more pre-clinical investigations. The purpose of this perspective is to summarize the recent advances that contributed in unveiling the intricate relationships between the structural modifications on iron-complexes and their reactivity, cellular trafficking and global mechanisms of action to broaden their use as anticancer drugs and advance to clinical evaluation.
Collapse
Affiliation(s)
- Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| | - Cécilia Hognon
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | | | - Antonio Monari
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Philippe C Gros
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| |
Collapse
|
5
|
Huang X, Cheng K, Liu L, Hu X, Gao X, Li H, Xu F, Li Z, Hua H, Li D. Design, synthesis and apoptosis-related antiproliferative activities of chelidonine derivatives. Bioorg Med Chem Lett 2020; 30:126913. [PMID: 31883693 DOI: 10.1016/j.bmcl.2019.126913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 11/25/2022]
Abstract
To get chelidonine derivatives with enhanced antiproliferative activity and selectivity, a series of nitric oxide donating derivatives (10a-f and 11a-j) were designed, synthesized and biologically evaluated. Compared with chelidonine, these compounds exhibited lower IC50 values against human hepatoma cells HepG2, breast cancer cells MCF-7, colon cancer cells HCT-116, as well as leukemia cells K562. Compound 11j displayed the strongest antiproliferative activity with IC50 values of 3.91, 6.90, 4.36 and 1.12 μM against the above four cells, respectively. Nevertheless, it showed an IC50 value >40 μM against human peripheral blood mononuclear cells (PBMCs), which demonstrated high selectivity between normal and cancer blood cells. In further mechanism studies, 11j showed the capability to induce K562 cells apoptosis, S phase cell cycle arrest and mitochondrial membrane potential disorder. Besides, 11j was found to be effective in promoting the expression of proapoptotic protein Bad and suppressing the expression of anti-apoptotic proteins Bcl-xL, catalase, survivin, claspin and clusterin.
Collapse
Affiliation(s)
- Xueyan Huang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Keguang Cheng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, and School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Raod, Guilin 541004, PR China
| | - Lilin Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|