Wang BC, Li XP, Hao BB, Zhang CX, Wang QL. Dual-Functional Coordination Polymer with High Proton Conductivity and a Low-Detection-Limit Fluorescent Probe.
J Phys Chem B 2021;
125:12627-12635. [PMID:
34747620 DOI:
10.1021/acs.jpcb.1c08304]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A coordination polymer with dual functions of high proton conductivity and highly sensitive fluorescent sensors demonstrates a great application potential. In this work, a cadmium-based coordination polymer (denoted as CP 1) with hydrothermal stability was synthesized. The abundant coordination water, lattice water, and amino groups make an extended hydrogen-bonding pathway for efficient proton migration, which endows CP 1 with the highest proton conductivity of 2.41 × 10-3 S·cm-1 at 353 K and 98% RH. Especially, the proton conductivity of the chitosan (CS) hybrid membrane containing CP 1 reaches a maximum value of 2.62 × 10-2 S·cm-1 under 343 K and 98% RH, which increases almost 7 times higher than that of the pure CS membrane due to the host-guest collaboration. Furthermore, luminescence studies revealed that CP 1 is a high-sensitivity and good-selectivity fluorescent probe for the detection of trace amounts of l-histidine with a lowest detection limit of 1.0 × 10-8 M.
Collapse