Asadpour Chounechenan S, Mohammadi A, Ghafouri H. A new and efficient diaminopyrimidine-based colorimetric and fluorescence chemosensor for the highly selective and sensitive detection of Cu
2+ in aqueous media and living cells.
SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022;
267:120507. [PMID:
34695712 DOI:
10.1016/j.saa.2021.120507]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/20/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
In this paper, a new and effective diaminopyrimidine-based chemosensor (DAPCS) was developed for the highly selective and ultra-sensitive detection of Cu2+ ion in aqueous media and living cell. Characterization and structure determining of DAPCS was determined by UV-Vis, FTIR and NMR analyses. It is observed that DAPCS and Cu (II) forms a ligand to metal charge transfer (LMCT) complex which produces distinguishable red color. The results also indicate that the DAPCS easily interacts with Cu2+ ion to form a 1:1 stoichiometry complex (DAPCS -Cu2+), resulting in a bathochromic shift in absorption maximum (429 nm to 449 nm) and remarkable quenching fluorescence intensity at the wavelength of 501 nm in DMSO-H2O solution. Furthermore, the detection limit of DAPCS towards Cu2+ was calculated to be 3.19 µM. Meanwhile, DAPCS was applied as fluorescent probe for detection of Cu2+ ions with the detection limit of 0.014 µM. The optimal pH range of probe DAPCS for quantitative analysis of Cu2+ ions was 9-11, which renders it suitable for detection of Cu2+ under physiological conditions. Additionally, the DAPCS could be applied to detect Cu2+ in real water samples and in HeLa cells, indicating the practical uses of DAPCS in real analyses.
Collapse