1
|
Kerche EF, Kairytė A, Członka S, da Silva VD, Salles NA, Schrekker HS, Amico SC. Imidazolium Ionic Liquids as Compatibilizer Agents for Microcrystalline Cellulose/Epoxy Composites. Polymers (Basel) 2023; 15:polym15020333. [PMID: 36679214 PMCID: PMC9865422 DOI: 10.3390/polym15020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Four imidazolium-based ionic liquids (IL; 1-butyl-3-methylimidazolium chloride, 1-carboxymethyl-3-methylimidazolium chloride, 1,3-dicarboxymethylimidazolium chloride and 1-(2-hydroxyethyl) -3-methylimidazolium chloride) were tested as compatibilizers of microcrystalline cellulose (MCC). Subsequently, ethanolic IL solutions were prepared; MCC was mixed, and the mixtures were left to evaporate the ethanol at ambient conditions. These modified MCC were characterized and applied as reinforcements (5.0 and 10 phr) in an epoxy resin aiming to manufacture biobased composites with enhanced performances. The IL did not significantly modify the morphological and structural characteristics of such reinforcements. Regarding the thermal stability, the slight increase was associated with the MCC-IL affinity. The IL-modified MCC-epoxy composites presented improved mechanical responses, such as flexural strength (≈22.5%) and toughness behavior (≈18.6%), compared with pure epoxy. Such improvement was also obtained for the viscoelastic response, where the storage modulus at the glassy state depended on the MCC amount and IL type. These differences were associated with stronger hydrogen bonding between IL and epoxy hardener or the IL with MCC, causing a "bridging" effect between MCC and epoxy matrix.
Collapse
Affiliation(s)
- Eduardo Fischer Kerche
- Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 91501-970, Brazil
- Correspondence:
| | - Agnė Kairytė
- Laboratory of Thermal Insulating Materials and Acoustics, Faculty of Civil Engineering, Institute of Building Materials, Vilnius Gediminas Technical University, LT-08217 Vilnius, Lithuania
| | - Sylwia Członka
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland
| | - Vinícius Demétrio da Silva
- Laboratory of Technological Processes and Catalysis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 91501-970, Brazil
| | - Nicholas Alves Salles
- Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 91501-970, Brazil
| | - Henri Stephan Schrekker
- Laboratory of Technological Processes and Catalysis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 91501-970, Brazil
| | - Sandro Campos Amico
- Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 91501-970, Brazil
| |
Collapse
|
2
|
Li Z, Han Q, Wang K, Song S, Xue Y, Ji X, Zhai J, Huang Y, Zhang S. Ionic liquids as a tunable solvent and modifier for biocatalysis. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2074359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhuang Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Qi Han
- School of Science, STEM College, RMIT University, Melbourne, Victoria, Australia
| | - Kun Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Shaoyu Song
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yaju Xue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xiuling Ji
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, Victoria, Australia
| | - Yuhong Huang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Green Manufacture, CAS, Beijing, China
- Dalian National Laboratory for Clean Energy, CAS, Dalian, Liaoning, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Ionic liquids for regulating biocatalytic process: Achievements and perspectives. Biotechnol Adv 2021; 51:107702. [PMID: 33515671 DOI: 10.1016/j.biotechadv.2021.107702] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/26/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
Biocatalysis has found enormous applications in sorts of fields as an alternative to chemical catalysis. In the pursue of green and sustainable chemistry, ionic liquids (ILs) have been considered as promising reaction media for biocatalysis, owing to their unique characteristics, such as nonvolatility, inflammability and tunable properties as regards polarity and water miscibility behavior, compared to organic solvents. In recent years, great developments have been achieved in respects to biocatalysis in ILs, especially for preparing various chemicals. This review tends to give illustrative examples with a focus on representative chemicals production by biocatalyst in ILs and elucidate the possible mechanism in such systems. It also discusses how to regulate the catalytic efficiency from several aspects and finally provides an outlook on the opportunities to broaden biocatalysis in ILs.
Collapse
|
4
|
Immobilization of cellulase in the non-natural ionic liquid environments to enhance cellulase activity and functional stability. Appl Microbiol Biotechnol 2019; 103:2483-2492. [PMID: 30685813 DOI: 10.1007/s00253-019-09647-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
Abstract
Ionic liquids (ILs) have been applied as an environmentally friendly solvent in the pretreatment of lignocellulosic biomass for more than a decade. The ILs involved pretreatment processes for cellulases mediated saccharification lead to both the breakdown of cellulose crystallinity and the decrease of lignin content, thereby improving the solubility of cellulose and the accessibility of cellulase. However, most cellulases are partially or completely inactivated in the presence of even low amount of ILs. Immobilized cellulases are found to perform improved stability and higher apparent activity in practical application compared with its free counterparts. Enzyme immobilization therefore has become a promising way to relieve the deactivation of cellulase in ILs. Various immobilization carriers and methods have been developed and achieved satisfactory results in improving the stability, activity, and recycling of cellulases in IL pretreatment systems. This review aims to provide detailed introduction of immobilization methods and carrier materials of cellulase, including natural polysaccharides, synthetic polymers, inorganic materials, magnetic materials, and newly developed composite materials, and illustrate key methodologies in improving the performance of cellulase in the presence of ILs. Especially, novel materials and concepts from the recently representative researches are focused and discussed comprehensively, and future trends in immobilization of cellulases in non-natural ILs environments are speculated in the end.
Collapse
|
5
|
Egorova KS, Ananikov VP. Fundamental importance of ionic interactions in the liquid phase: A review of recent studies of ionic liquids in biomedical and pharmaceutical applications. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|