1
|
Shen C, Yan J, Ai Z, Huang H, Mo L, Liang B, Zhang C. Insights into the newly synthesized bi- Mannich base for carbon steel corrosion inhibition in H 2S and HCl solution. Sci Rep 2024; 14:19869. [PMID: 39191811 DOI: 10.1038/s41598-024-70905-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
Adding corrosion inhibitors is considered to be a cost-effective way to inhibit metal corrosion. In this study, we report the synthesis of a bi-mannich base corrosion inhibitor (BMT) with an impressive inhibition efficiency on carbon steel in H2S and HCl co-existing solution. At the BMT concentration of 9 ppm, the inhibition efficiency (η) of 96.9%, 97.6% and 98.0% were determined by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy, respectively. The adsorption of BMT on the carbon steel surface follows the Langmuir adsorption isotherm, and the calculated free energy indicates that the adsorption is a spontaneous process. This research also delves into understanding the adsorption behavior and corrosion inhibition mechanism of BMT on carbon steel surfaces through quantum chemistry calculations. The results of this study provide guidance for the application of BMT as a corrosion inhibitor in sour and acid environments.
Collapse
Affiliation(s)
- Cong Shen
- Research Institute of Natural Gas Technology, PetroChina Southwest Oil and Gasfield Company, Chengdu, 610213, China.
- National Energy R&D Center of High Sulfur Gas Exploitation, Chengdu, 610000, China.
- High Sulfur Gas Exploitation Pilot Test Center, CNPC, Chengdu, 610000, China.
| | - Jing Yan
- Research Institute of Natural Gas Technology, PetroChina Southwest Oil and Gasfield Company, Chengdu, 610213, China
- National Energy R&D Center of High Sulfur Gas Exploitation, Chengdu, 610000, China
- High Sulfur Gas Exploitation Pilot Test Center, CNPC, Chengdu, 610000, China
| | - Zhipeng Ai
- PetroChina Southwest Oil and Gasfield Company, Chengdu, 610000, China
| | - Hongbing Huang
- Research Institute of Natural Gas Technology, PetroChina Southwest Oil and Gasfield Company, Chengdu, 610213, China
- National Energy R&D Center of High Sulfur Gas Exploitation, Chengdu, 610000, China
- High Sulfur Gas Exploitation Pilot Test Center, CNPC, Chengdu, 610000, China
| | - Lin Mo
- Research Institute of Natural Gas Technology, PetroChina Southwest Oil and Gasfield Company, Chengdu, 610213, China
- National Energy R&D Center of High Sulfur Gas Exploitation, Chengdu, 610000, China
- High Sulfur Gas Exploitation Pilot Test Center, CNPC, Chengdu, 610000, China
| | - Bangzhi Liang
- Southern Sichuan Gas District, PetroChina Southwest Oil & Gasfield Company, Luzhou, 646000, China
| | - ChangHui Zhang
- Central Sichuan Oil and Gas District, PetroChina Southwest Oil and Gasfield Company, Suining, 629000, China
| |
Collapse
|
2
|
Zhao C, Xiang W, Zhang C, Wang X, Sun Y, Qiu X, Yu Q, Cai M, Yu B, Zhou F, Liu W. Experimental and Theoretical Studies on Long Alkyl Chain-Bearing Dibenzotriazole Ionic Liquids as Eco-friendly Corrosion Inhibitors in Aqueous Hydrochloride Acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15232-15243. [PMID: 38995620 DOI: 10.1021/acs.langmuir.4c01722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Three long alkyl chain-bearing dibenzotriazole ionic liquids (BTA-R-BTA, R = 8, 12, and 16) were synthesized with high yield (>98%) through a simple and eco-friendly process. Their anticorrosion performance for Q235 carbon steel in 6 M hydrochloride acid was comprehensively evaluated by weight loss tests, electrochemical methods (potentiodynamic polarization and electrochemical impedance spectroscopy), and surface analysis techniques. As the length of the alkyl chain increased, the maximum corrosion inhibition efficiency enhanced from 55.02% (for BTA-8-BTA at 1.2 mM) to 97.10% (for BTA-12-BTA at 0.3 mM) and 98.84% (for BTA-16-BTA at 0.3 mM). Density functional theory calculation indicated that the alkyl chain length had little influence on the inhibitors' electronic structures, while molecular dynamics simulations revealed that the thickness, surface coverage, and compactness of adsorption films formed at the metal-electrolyte interface increased with the elongated alkyl chain. Corrosion inhibition efficiency is strongly correlated with the structures of the adsorption film.
Collapse
Affiliation(s)
- Chen Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
| | - Wenjun Xiang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
| | - Chaoyang Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
| | - Xingwei Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
| | - Yuchen Sun
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
| | - Xuanlin Qiu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
| | - Qiangliang Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
| | - Meirong Cai
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
3
|
Selim YA, Abd-El-Raouf M, Zakaria K, Sayed AZ, Moustafa YM, Ashmawy AM. An electrochemical, and surface studies of synthesized Gemini ionic liquid as corrosion inhibitor for carbon steel in petroleum field. Sci Rep 2024; 14:10766. [PMID: 38730028 PMCID: PMC11087565 DOI: 10.1038/s41598-024-58321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/27/2024] [Indexed: 05/12/2024] Open
Abstract
In this work, we study the efficiency of N1, N3-dibenzyl-N1, N1, N3, N3-tetramethylpropane-1,3-diaminium chloride, as anticorrosion. This compound exhibits potential as a prospective remedy to stop the deterioration of carbon steel caused by corrosion in 1.0 M HCl. The synthesis of this compound is described in a comprehensive manner, and its composition is supported by a range of precise analytical approaches such as elemental analysis, and mass spectroscopy. Based on the findings of the investigation, the synthesized Gemini ionic liquid demonstrates a robust capacity to slow down the rate at which the metal corrodes. The Prepared compound was evaluation by electrochemical and morphology study. Our results revealed that elevating the inhibitor concentration led to an augmentation in inhibition effectiveness, reaching up to 94.8% at 200 ppm of the synthesized compound at 298 K. It is crucial to emphasize that the recently prepared Gemini ionic liquid is consistent with the Langmuir adsorption model and function as a mixed inhibitor, participating in the physio-chemisorption process of adsorption.
Collapse
Affiliation(s)
- Yousef A Selim
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - M Abd-El-Raouf
- Egyptian Petroleum Research Institute (EPRI), Nasr City, P.O. 11727, Cairo, Egypt
| | - K Zakaria
- Egyptian Petroleum Research Institute (EPRI), Nasr City, P.O. 11727, Cairo, Egypt
| | - Ahmed Z Sayed
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Yasser M Moustafa
- Egyptian Petroleum Research Institute (EPRI), Nasr City, P.O. 11727, Cairo, Egypt
| | - Ashraf M Ashmawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
4
|
Liu K, Li P, Li X, Zhang W, Zou J, Liu Y, Li P, Cui H, Yang Y, Ai W. The development of a novel bio-based corrosion inhibitor: using biomass-derived 5-hydroxymethylfurfural (5-HMF) as a starting material. RSC Adv 2024; 14:6848-6855. [PMID: 38410370 PMCID: PMC10895337 DOI: 10.1039/d3ra08240g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/18/2024] [Indexed: 02/28/2024] Open
Abstract
An environmentally friendly corrosion inhibitor was prepared from the bio-based platform 5-hydroxymethylfurfural. This corrosion inhibitor was confirmed to be an efficient mixed-type corrosion inhibitor through a weight loss experiment and electrochemical experiment. Both thermodynamic and kinetic parameters were calculated and discussed, indicating that the adsorption of this bio-based inhibitor on a steel surface is a chemisorption process. Moreover, quantum chemical calculations were performed and further confirmed the formation of an effective productive film of this bio-based inhibitor on the metal surface. It is worth noting that the synthesis route of this bio-based corrosion inhibitor is green and environmentally friendly, and does not involve toxic chemical reagents.
Collapse
Affiliation(s)
- Kexin Liu
- School of Material and Chemical Engineering, Zhongyuan University of Technology Zhengzhou Henan Province 450007 People's Republic of China
| | - Ping Li
- School of Material and Chemical Engineering, Zhongyuan University of Technology Zhengzhou Henan Province 450007 People's Republic of China
| | - Xia Li
- Department of Pharmacy, Logistics University of People's Armed Police Forces, Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard Tianjin 300309 China
| | - Wei Zhang
- Zhejiang Sugar Energy Technology Co., Ltd., Ningbo New Material Innovation Center A1-6, High-tech Zone, East District Ningbo Zhejiang Province 315100 China
| | - Jiawei Zou
- School of Material and Chemical Engineering, Zhongyuan University of Technology Zhengzhou Henan Province 450007 People's Republic of China
| | - Yuan Liu
- School of Material and Chemical Engineering, Zhongyuan University of Technology Zhengzhou Henan Province 450007 People's Republic of China
| | - Pengyu Li
- School of Material and Chemical Engineering, Zhongyuan University of Technology Zhengzhou Henan Province 450007 People's Republic of China
| | - Haitao Cui
- School of Material and Chemical Engineering, Zhongyuan University of Technology Zhengzhou Henan Province 450007 People's Republic of China
| | - Yu Yang
- School of Material and Chemical Engineering, Zhongyuan University of Technology Zhengzhou Henan Province 450007 People's Republic of China
| | - Wenying Ai
- School of Material and Chemical Engineering, Zhongyuan University of Technology Zhengzhou Henan Province 450007 People's Republic of China
| |
Collapse
|
5
|
Gómez-Sánchez G, Olivares-Xometl O, Arellanes-Lozada P, Likhanova NV, Lijanova IV, Arriola-Morales J, Díaz-Jiménez V, López-Rodríguez J. Temperature Effect on the Corrosion Inhibition of Carbon Steel by Polymeric Ionic Liquids in Acid Medium. Int J Mol Sci 2023; 24:ijms24076291. [PMID: 37047266 PMCID: PMC10094097 DOI: 10.3390/ijms24076291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
In the present research work, the temperature effect on the corrosion inhibition process of API 5L X60 steel in 1 M H2SO4 by employing three vinylimidazolium poly(ionic liquid)s (PILs) was studied by means of electrochemical techniques, surface analysis and computational simulation. The results revealed that the maximal inhibition efficiency (75%) was achieved by Poly[VIMC4][Im] at 308 K and 175 ppm. The PILs showed Ecorr displacements with respect to the blank from −14 mV to −31 mV, which revealed the behavior of mixed-type corrosion inhibitors (CIs). The steel micrographs, in the presence and absence of PILs, showed less surface damage in the presence of PILs, thus confirming their inhibiting effect. The computational studies of the molecular orbitals and molecular electrostatic potential of the monomers suggested that the formation of a protecting film could be mainly due to the nitrogen and oxygen heteroatoms present in each structure.
Collapse
|
6
|
Fares MM, Radaydeh SK, Masadeh KH. Bolaamphiphilic Microstrutural Polyphenol Flavonoids as Sustainable High Efficacy Coating for Aluminium Surafce in Aqououes Solution. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohammad M. Fares
- Department of Chemistry Jordan University of Science & Technology Irbid Jordan
| | - Samah K. Radaydeh
- Department of Chemistry Jordan University of Science & Technology Irbid Jordan
| | - Khansa'a H. Masadeh
- Department of Chemistry Jordan University of Science & Technology Irbid Jordan
| |
Collapse
|