1
|
Akhtar MS, Ali S, Zaman W. Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications. Molecules 2024; 29:4317. [PMID: 39339312 PMCID: PMC11433758 DOI: 10.3390/molecules29184317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The growing presence of diverse pollutants, including heavy metals, organic compounds, pharmaceuticals, and emerging contaminants, poses significant environmental and health risks. Traditional methods for pollutant removal often face limitations in efficiency, selectivity, and sustainability. This review provides a comprehensive analysis of recent advancements in innovative adsorbents designed to address these challenges. It explores a wide array of non-conventional adsorbent materials, such as nanocellulose, metal-organic frameworks (MOFs), graphene-based composites, and biochar, emphasizing their sources, structural characteristics, and unique adsorption mechanisms. The review discusses adsorption processes, including the basic principles, kinetics, isotherms, and the factors influencing adsorption efficiency. It highlights the superior performance of these materials in removing specific pollutants across various environmental settings. The practical applications of these adsorbents are further explored through case studies in industrial settings, pilot studies, and field trials, showcasing their real-world effectiveness. Additionally, the review critically examines the economic considerations, technical challenges, and environmental impacts associated with these adsorbents, offering a balanced perspective on their viability and sustainability. The conclusion emphasizes future research directions, focusing on the development of scalable production methods, enhanced material stability, and sustainable regeneration techniques. This comprehensive assessment underscores the transformative potential of innovative adsorbents in pollutant remediation and their critical role in advancing environmental protection.
Collapse
Affiliation(s)
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
2
|
Torbati S, Atashbar Kangarloei B, Asalpisheh Z. Fluoranthene biotreatment using prominent freshwater microalgae: physiological responses of microalgae and artificial neural network modeling of the bioremoval process. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1038-1048. [PMID: 38084668 DOI: 10.1080/15226514.2023.2288900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Due to the intensified industrial activities and other anthropogenic actions, contamination of polycyclic aromatic hydrocarbons (PAHs) has been growing at an alarming rate, turning in to a serious environmental concern. Bioremediation, as an eco-friendly and sustainable removal technology, can be used by organisms to reduce the resulting contaminations. In the present study, the ability of Tetradesmus obliquus to remove of fluoranthene (FLA) was evaluated. It was confirmed that FLA removal efficiency was managed by various environmental parameters and pH was found to be one of the most important influencial factors. The reusability of the algae in long-term repetitive operations confirmed the occurrence of biodegradation along with other natural attenuation and 10 intermediate compounds were identified in the FLA biodegradation pathway by GC-MS. As a result of physiological assays, induced antioxidant enzymes activities and augmentation of phenol and flavonoids contents, after the treatment of the microalgae by a high concentration of FLA, confirmed the ability of the microalgae to upregulate its antioxidant defense system in response to the toxic effects of FLA. An artificial neural network (ANN) model was then developed to predict FLA biodegradation efficiency and the appropriate predictive performance of ANN was confirmed by comparing the experimental FLA removal efficiency with its predicted amounts (R2 = 0.99).
Collapse
Affiliation(s)
- Samaneh Torbati
- Department of Ecology and Aquatic Stocks Management, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Behrouz Atashbar Kangarloei
- Department of Ecology and Aquatic Stocks Management, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Zahra Asalpisheh
- Department of Ecology and Aquatic Stocks Management, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| |
Collapse
|
3
|
Cerrahoğlu Kaçakgil E, Turanlı A, Dizman C. Polymeric Networks Derived from UV-Curing of Bio-Based Polyesters for Methyl Violet Removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87129-87144. [PMID: 37420155 DOI: 10.1007/s11356-023-28599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
In this study, firstly, the syntheses and characterizations of biobased polyesters with different acid values obtained from the condensation reaction of biobased itaconic acid and polyethylene glycol were investigated. Then, UV curing was applied to form polymeric networks as adsorbent material from these polyesters containing different acids. Fourier transform infrared spectrometry (FTIR), Nuclear Magnetic Resonance Spectroscopy (NMR), X-ray Photoelectron Spectroscopy (XPS), Gel Permeation Chromatography (GPC) and scanning electron microscope (SEM) were used for the characterization of polymeric networks. The effects of the parameters of contact time, initial dye concentration, pH, temperature, amount of adsorbent on adsorption were investigated by batch method. In addition, adsorption equilibrium data were analyzed by Langmuir, Freundlich, Tempkin, Elovich, Redlich-Peterson, Harkin-Jura and Jossens adsorption models. Kinetic and thermodynamic studies were performed at 298, 308, 318 and 328 K and desorption studies were also examined. Comparison studies for the effects of the acid values of the adsorbent materials on the removal of methyl violet (MV) organic pollutant from aqueous solutions were analyzed. According to the pseudo-second-order model, the adsorption capacities were found to be ≥ 357.14 mg/g for the adsorbents. From the thermodynamic data, it was determined that the mechanism was exothermic and spontaneous. As a result of the third reuse, it was found that the adsorbents had a removal efficiency of ≥ 72.36%. According to the results observed the increase in the acidities in the chemical structure of bio-based polymeric networks enhances the adsoption properties.
Collapse
Affiliation(s)
| | - Aleyna Turanlı
- İzel Kimya Research and Development Center, Dilovası, Kocaeli, Turkey
| | - Cemil Dizman
- İzel Kimya Research and Development Center, Dilovası, Kocaeli, Turkey
| |
Collapse
|
4
|
Karimi S, Saraji M. Synthesis and characterization of g-C 3N 4-modified zeolite and its application as a methyl violet 6b cationic dye sorbent. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:748. [PMID: 37246186 DOI: 10.1007/s10661-023-11301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/25/2023] [Indexed: 05/30/2023]
Abstract
This paper reports a novel, low-cost, and facile approach to prepare a hybrid material consisting of zeolite, Fe3O4, and graphitic carbon nitride as a sorbent to remove methyl violet 6b (MV) from aqueous solutions. To improve the performance of the zeolite for the removal of MV, graphitic carbon nitride (with different C-N bonds and conjugated π region) was used. Also, to perform an easy and fast separation of sorbent from aqueous media, magnetic nanoparticles were incorporated into the sorbent. The prepared sorbent was characterized by different analytical techniques such as X-ray diffraction analysis, Fourier transform infrared, field emission scanning electron microscopy, and energy-dispersive X-ray analysis. The effects of four parameters of initial pH, initial concentration of MV, contact time, and the adsorbent amount on the removal process were investigated and optimized by the central composite design method. The removal efficiency of MV was modeled as a function of the experimental parameters. Affording to the proposed model, the values of 10 mg, 28 mg L-1, and 2 min were selected as optimum condition for adsorbent amount, initial concentration, and contact time, respectively. Under this condition, the optimal removal efficiency was 86% ± 2.8 which were close to the predicted value of the model (89%). Therefore, the model could fit and predict the data. The maximal adsorption capacity of sorbent derived from Langmuir's isotherm was 384.6 mg g-1. The applied composite can efficiently remove MV from various wastewater samples (paint, textile industries, pesticide production wastewater samples, and municipal wastewater).
Collapse
Affiliation(s)
- Somayeh Karimi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Saraji
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
5
|
Adam MR, Othman MHD, Hubadillah SK, Abd Aziz MH, Jamalludin MR. Application of natural zeolite clinoptilolite for the removal of ammonia in wastewater. MATERIALS TODAY: PROCEEDINGS 2023. [DOI: 10.1016/j.matpr.2022.12.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
6
|
Altintig E, Sarıcı B, Karataş S. Prepared activated carbon from hazelnut shell where coated nanocomposite with Ag + used for antibacterial and adsorption properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13671-13687. [PMID: 36136190 DOI: 10.1007/s11356-022-23004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
In this research, prepared activated carbon by H3PO4 from hazelnut shells was coated with silver ions for the preparation of nanoparticles which were mixed in two ratios (1:0.5 and 1:1) by using of chemical reduction method. The adsorption capacity of activated carbons has been proven by BET and iodine number. Then, the antimicrobial effect of nanoparticles on the Staphylococcus aureus and Escherichia coli was investigated; in addition to that, the characterization of hazelnut shell and silver-coated activated carbons was determined by Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) methods. The optimum condition of activated carbon from hazelnut shells indicated that 66.01% carbon content within 36.22% efficiency, while BET surface area achieved as 1208 m2/g and its contained 0.6104 cm3 g-1 total pore volume. The microbial effect indicated that 105 CFU/mL of E. coli was completely inhibited in 30 min. Silver-coated activated carbon showed excellent bacteriostatic activity against E. coli and S. aureus. The results show that the composite has good prospects for applications in drinking water. E. coli of 104 CFU/mL in drinking water were destroyed within 25 min of contact with the filter made with AgAC.
Collapse
Affiliation(s)
- Esra Altintig
- Pamukova Vocational School, Sakarya University of Applied Sciences, Sakarya, 54900, Turkey.
| | - Birsen Sarıcı
- Food Safety, and Nutrition Department, Food Safety Department, Istanbul Aydın University, Istanbul, 34290, Turkey
| | - Sukru Karataş
- Department of Nutrition and Dietetics, Istanbul Arel University, Istanbul, 34200, Turkey
| |
Collapse
|
7
|
Altıntıg E, Ates A, Angın D, Topal Z, Aydemir Z. Kinetic, equilibrium, adsorption mechanisms of RBBR and MG dyes on Chitosan-Coated Montmorillonite with an Ecofriendly Approach. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Recent Review of Titania-Clay-Based Composites Emerging as Advanced Adsorbents and Photocatalysts for Degradation of Dyes over the Last Decade. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/3823008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Textile industry being one of the most flourishing industries keeps growing and developing every year, and the consequences are not very pleasant. Even though its contribution towards economy of a country is indisputable, there are many pros and cons associated with it that should not be brushed aside, one of them being textile dye waste which is also growing at alarming rate. Many techniques have been designed to deal with this environmental crisis including adsorption and photodegradation of dye waste by various substances, both natural and synthetic. TiO2 and clay both have gained immense popularity in this area. Over the last decade, many successful attempts have been made to design TiO2-clay-based composites to combine and make the most of their individual capabilities to degrade textile dye waste. While clay is an effective adsorbent, inexpensive, innocuous, and a great ion exchanger, TiO2 provides supplementary active sites and free radicals and speeds up the degradation rate of dyes. This review summarizes various features of TiO2-clay-based composites including their surface characteristics, their role as dye adsorbents and photocatalysts, challenges in their implementation, and modifications to overcome these challenges made over the last decade.
Collapse
|
9
|
Hamd A, Dryaz AR, Shaban M, AlMohamadi H, Abu Al-Ola KA, Soliman NK, Ahmed SA. Fabrication and Application of Zeolite/Acanthophora Spicifera Nanoporous Composite for Adsorption of Congo Red Dye from Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2441. [PMID: 34578757 PMCID: PMC8464800 DOI: 10.3390/nano11092441] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
Systematic investigations involving laboratory, analytical, and field trials were carried out to obtain the most efficient adsorbent for the removal of congo red (CR) dye from industrial effluent. Modification of the zeolite (Z) by the Acanthophora Spicifera algae (AS; marine algae) was evaluated in terms of adsorption capability of the zeolite to remove CR dye from aqueous solution. The zeolite/algae composite (ZAS) was fabricated using the wet impregnation technique. The AS, Z, and the synthesized ZAS composite were analyzed utilizing various characterization techniques. The newly synthesized ZAS composite has an adsorption capacity that is significantly higher than that of Z and AS, particularly at low CR concentrations. Batch experiments were carried out to explore the effects of different experimental factors, as well as the dye adsorption isotherms and kinetics. Owing to the presence of intermolecular interactions, the computational analysis showed that the adsorption of the CR molecule on zeolite surfaces is exothermic, energetically favorable, and spontaneous. Furthermore, growing the zeolite surface area has no discernible effect on the adsorption energies in all configurations. The ZAS composite may be used as a low-cost substitute adsorbent for the removal of anionic dyes from industrial wastewater at lower dye concentrations, according to the experimental results. Adsorption of CR dye onto Z, AS, and ZAS adsorbents was adequately explained by pseudo-second-order kinetics and the Langmuir isotherm. The sorption mechanism was also evaluated using Weber's intra-particle diffusion module. Finally, field testing revealed that the newly synthesized adsorbent was 98.0% efficient at extracting dyes from industrial wastewater, proving the foundation of modern eco-friendly materials that aid in the reuse of industrial wastewater.
Collapse
Affiliation(s)
- Ahmed Hamd
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt;
- Basic Science Department, Nahda University Beni-Suef, Beni-Suef 62764, Egypt;
| | - Asmaa Ragab Dryaz
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (A.R.D.); (S.A.A.)
| | - Mohamed Shaban
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt;
- Department of Physics, Faculty of Science, Islamic University in Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 42351, Saudi Arabia;
| | - Khulood A. Abu Al-Ola
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia;
| | | | - Sayed A. Ahmed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (A.R.D.); (S.A.A.)
| |
Collapse
|