1
|
Butkovskaya NI, Setser DW. Vibrational relaxation of HOD by collisions with Ar atoms. J Chem Phys 2024; 161:054301. [PMID: 39087535 DOI: 10.1063/5.0218695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Vibrational relaxation of HOD(v12, v3) molecules by collisions with Ar was studied at 298 K (v12 denotes coupled bending, v2, and OD stretching, v1, vibrational modes and v3 denotes OH stretching mode). The vibrationally excited HOD molecules were generated by exothermic abstraction reactions of OD radicals with 13 different RH reactants and observed by infrared emission from a fast-flow reactor as a function of Ar pressure and reaction time. State-specific relaxation rate constants were obtained by comparison of the time evolution of the experimental vibrational distributions with numerical kinetic calculations for vibrational populations. The relaxation mechanism was based on the relaxation scheme of H2O studied earlier with the addition of specific channels for HOD(v12, v3). Unlike H2O, energy in stretching and bending vibrations of HOD cannot be separated due to close ν1 and 2ν2 energies, which leads to fast collisional equilibration between these Fermi-resonant levels. For relaxation of the only pure bending state (10), a rate constant of (1.5 ± 0.3) × 10-13 cm3 molecule-1 s-1 was obtained. The relaxation rate of higher v12 states linearly increases with quantum number and very likely includes transfer of population from OD stretch levels, v1, to a lower energy bend level. The average rate constants for the loss of population from (01), (02), and (03) stretching states are (1.1 ± 0.3) × 10-14, (3.2 ± 1.0) × 10-14, and (5.6 ± 1.2) × 10-14 cm3 molecule-1 s-1, respectively.
Collapse
Affiliation(s)
- N I Butkovskaya
- Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - D W Setser
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
2
|
Czakó G, Gruber B, Papp D, Tajti V, Tasi DA, Yin C. First-principles mode-specific reaction dynamics. Phys Chem Chem Phys 2024; 26:15818-15830. [PMID: 38639072 DOI: 10.1039/d4cp00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Controlling the outcome of chemical reactions by exciting specific vibrational and/or rotational modes of the reactants is one of the major goals of modern reaction dynamics studies. In the present Perspective, we focus on first-principles vibrational and rotational mode-specific dynamics computations on reactions of neutral and anionic systems beyond six atoms such as X + C2H6 [X = F, Cl, OH], HX + C2H5 [X = Br, I], OH- + CH3I, and F- + CH3CH2Cl. The dynamics simulations utilize high-level ab initio analytical potential energy surfaces and the quasi-classical trajectory method. Besides initial state specificity and the validity of the Polanyi rules, mode-specific vibrational-state assignment for polyatomic product species using normal-mode analysis and Gaussian binning is also discussed and compared with experiment.
Collapse
Affiliation(s)
- Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Balázs Gruber
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Viktor Tajti
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Domonkos A Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Cangtao Yin
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| |
Collapse
|
3
|
Gruber B, Tajti V, Czakó G. Vibrational Mode-Specific Dynamics of the OH + C 2H 6 Reaction. J Phys Chem A 2023; 127:7364-7372. [PMID: 37620310 PMCID: PMC10493966 DOI: 10.1021/acs.jpca.3c04328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Indexed: 08/26/2023]
Abstract
We investigate the effects of the initial vibrational excitations on the dynamics of the OH + C2H6 → H2O + C2H5 reaction using the quasi-classical trajectory method and a full-dimensional analytical ab initio potential energy surface. Excitation of the initial CH, CC, and OH stretching modes enhances, slightly inhibits, and does not affect the reactivity, respectively. Translational energy activates the early-barrier title reaction more efficiently than OH and CC stretching excitations, in accord with the Polanyi rules whereas CH stretching modes have similar or higher efficacy than translation, showing that these rules are not always valid in polyatomic processes. Scattering angle, initial attack angle, and product translational energy distributions show the dominance of direct stripping with increasing collision energy, side-on OH and isotropic C2H6 attack preferences, and substantial reactant-product translational energy transfer without any significant mode specificity. The reactant vibrational excitation energy of OH and C2H6 flows into the H2O and C2H5 product vibrations, respectively, whereas product rotations are not affected. The computed mode-specific H2O vibrational distributions show that initial OH excitation appears in the asymmetric stretching vibration of the H2O product and allow comparison with experiments.
Collapse
Affiliation(s)
- Balázs Gruber
- MTA-SZTE Lendület Computational
Reaction Dynamics Research Group, Interdisciplinary Excellence Centre
and Department of Physical Chemistry and Materials Science, Institute
of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Viktor Tajti
- MTA-SZTE Lendület Computational
Reaction Dynamics Research Group, Interdisciplinary Excellence Centre
and Department of Physical Chemistry and Materials Science, Institute
of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational
Reaction Dynamics Research Group, Interdisciplinary Excellence Centre
and Department of Physical Chemistry and Materials Science, Institute
of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
4
|
Gruber B, Czakó G. High-level ab initio mapping of the multiple H-abstraction pathways of the OH + glycine reaction. Phys Chem Chem Phys 2023; 25:5271-5281. [PMID: 36723222 DOI: 10.1039/d2cp03049g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We perform a systematic search in the transition-state (TS) and product-channel complex (MIN) regions of the multi-channel OH + glycine → H2O + H2N-CH-COOH (CH)/HN-CH2-COOH (NH)/H2N-CH2-COO (COOH) reactions. Geometry optimizations reveal {7, 3, 3} CH-TS, {2, 2, 2} CH-MIN, {17, 10, 5} NH-TS, {35, 19, 19} NH-MIN, and {6, 5, 5} COOH-TS conformers at the {MP2/3-21G, MP2/aug-cc-pVDZ, CCSD(T)-F12b/aug-cc-pVDZ} levels of theory as well as 2 additional CH-TSs based on chemical intuition. The benchmark relative energies of the TS, MIN, and product conformers are obtained by considering basis set effects up to aug-cc-pVQZ using the explicitly-correlated CCSD(T)-F12b method, post-(T) correlation up to CCSDT(Q), core correlation, scalar relativistic effects, spin-orbit coupling, and zero-point energy corrections. All the CH [ΔEe(ΔH0) = -38.54(-38.61) kcal mol-1], NH [ΔEe(ΔH0) = -16.72(-17.98) kcal mol-1], and COOH [ΔEe = -4.98 kcal mol-1] reactions are exothermic and proceed via shallow, usually negative, classical(adiabatic) barriers of -0.37(-0.95), -1.91(-2.48), and 1.02(-0.57) kcal mol-1, respectively. In the entrance channel MRCI/aug-cc-pVTZ computations reveal several complexes with reactive(non-reactive) arrangements and binding energies of 1.0, 1.6, 3.3, (5.2 and 5.9) kcal mol-1, stabilized by CH⋯OH, NH⋯OH, COOH⋯OH, (OH⋯OC and OH⋯N) hydrogen bonds, respectively.
Collapse
Affiliation(s)
- Balázs Gruber
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| |
Collapse
|
5
|
Espinosa-Garcia J, Rangel C. Analytical potential energy surface and dynamics for the OH + CH 3OH reaction. J Chem Phys 2023; 158:054302. [PMID: 36754788 DOI: 10.1063/5.0137372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Using as functional form a combination of valence bond and mechanic molecular terms a new full-dimensional potential energy surface was developed for the title reaction, named PES-2022, which was fitted to high-level ab initio calculations at the coupled-cluster singles, doubles, and perturbative triples-F12 explicitly correlated level on a representative number of points describing the reactive system. This surface simultaneously describes the two reaction channels, hydrogen abstraction from the methyl group [(R1) path] and from the alcohol group [(R2) path] of methanol to form water. PES-2022 is a smooth and continuous surface, which reasonably describes the topology of this reactive system from reactants to products, including the intermediate complexes present in the system. Based on PES-2022 an exhaustive dynamics study was performed using quasi-classical trajectory calculations under two different initial conditions: at a fixed room temperature, for direct comparison with the experimental evidence and at different collision energies, to analyze possible mechanisms of reaction. In the first case, the available energy was mostly deposited as water vibrational energy, with the vibrational population inverted in the stretching modes and not inverted in the bending modes, reproducing the experimental evidence. In the second case, the analysis of different dynamics magnitudes (excitation functions, product energy partitioning, and product scattering distributions), allows us to suggest different mechanisms for both (R1) and (R2) paths: a direct mechanism for the (R2) path vs an indirect one, related with "nearly trapped" trajectories in the intermediate complexes, for the (R1) path.
Collapse
Affiliation(s)
- J Espinosa-Garcia
- Área de Química Física and Instituto de Computación Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain
| | - C Rangel
- Área de Química Física and Instituto de Computación Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
6
|
Gruber B, Tajti V, Czako G. Full-dimensional automated potential energy surface development and dynamics for the OH + C 2H 6 reaction. J Chem Phys 2022; 157:074307. [DOI: 10.1063/5.0104889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We develop a full-dimensional analytical potential energy surface (PES) for the OH + C2H6 reaction using the Robosurfer program system, which automatically (1) selects geometries from quasi-classical trajectories, (2) performs ab initio computations using a CCSD(T)-F12/triple-zeta-quality composite method, (3) fits the energies utilizing the permutationally-invariant monomial symmetrization approach, and iteratively improves the PES via steps (1)−(3). Quasi-classical trajectory simulations on the new PES reveal that hydrogen abstraction leading to H2O + C2H5 dominates in the collision energy range of 10−50 kcal/mol. The abstraction cross sections increase and the dominant mechanism shifts from rebound (small impact parameters and backward scattering) to stripping (larger impact parameters and forward scattering) with increasing collision energy as opacity functions and scattering angle distributions indicate. The abstraction reaction clearly favors side-on OH attack over O-side and the least-preferred H-side approach, whereas C2H6 behaves like a spherical object with only slight C−C-perpendicular side-on preference. Collision energy efficiently flows into the relative translation of the products, whereas product internal energy distributions show only little collision energy dependence. H2O/C2H5 vibrational distributions slightly/significantly violate zero-point energy and are nearly independent of collision energy, whereas the rotational distributions clearly blue-shift as collision energy increases.
Collapse
Affiliation(s)
- Balázs Gruber
- University of Szeged Faculty of Science and Informatics, Hungary
| | - Viktor Tajti
- Chemistry, University of Szeged Faculty of Science and Informatics, Hungary
| | - Gabor Czako
- Chemistry, University of Szeged Faculty of Science and Informatics, Hungary
| |
Collapse
|
7
|
Espinosa-Garcia J, Rangel C, Corchado JC. Current Status of the X + C 2H 6 [X ≡ H, F( 2P), Cl( 2P), O( 3P), OH] Hydrogen Abstraction Reactions: A Theoretical Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123773. [PMID: 35744901 PMCID: PMC9228020 DOI: 10.3390/molecules27123773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022]
Abstract
This paper is a detailed review of the chemistry of medium-size reactive systems using the following hydrogen abstraction reactions with ethane, X + C2H6 → HX + C2H5; X ≡ H, F(2P), Cl(2P), O(3P) and OH, and focusing attention mainly on the theoretical developments. These bimolecular reactions range from exothermic to endothermic systems and from barrierless to high classical barriers of activation. Thus, the topography of the reactive systems changes from reaction to reaction with the presence or not of stabilized intermediate complexes in the entrance and exit channels. The review begins with some reflections on the inherent problems in the theory/experiment comparison. When one compares kinetics or dynamics theoretical results with experimental measures, one is testing both the potential energy surface describing the nuclei motion and the kinetics or dynamics method used. Discrepancies in the comparison may be due to inaccuracies of the surface, limitations of the kinetics or dynamics methods, and experimental uncertainties that also cannot be ruled out. The paper continues with a detailed review of some bimolecular reactions with ethane, beginning with the reactions with hydrogen atoms. The reactions with halogens present a challenge owing to the presence of stabilized intermediate complexes in the entrance and exit channels and the influence of the spin-orbit states on reactivity. Reactions with O(3P) atoms lead to three surfaces, which is an additional difficulty in the theoretical study. Finally, the reactions with the hydroxyl radical correspond to a reactive system with ten atoms and twenty-four degrees of freedom. Throughout this review, different strategies in the development of analytical potential energy surfaces describing these bimolecular reactions have been critically analyzed, showing their advantages and limitations. These surfaces are fitted to a large number of ab initio calculations, and we found that a huge number of calculations leads to accurate surfaces, but this information does not guarantee that the kinetics and dynamics results match the experimental measurements.
Collapse
|
8
|
Butkovskaya NI, Setser DW. Reactions of OH and OD radicals with ethanethiol and diethylsulfide: Branching ratio and vibrational energy disposal for the product water molecules. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Sharipov AS, Loukhovitski BI. Energy disposal into the vibrational degrees of freedom of bimolecular reaction products: Key factors and simple model. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Butkovskaya NI, Setser DW. Reactions of OH and OD radicals with simple thiols and sulfides studied by infrared chemiluminescence of isotopic water products: Reaction OH + CH
3
SH revisited. INT J CHEM KINET 2021. [DOI: 10.1002/kin.21475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nadezhda I. Butkovskaya
- Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences Moscow 119991 Russian Federation
| | - Don W. Setser
- Department of Chemistry Kansas State University Manhattan KS 66506 USA
| |
Collapse
|
11
|
Li H, Troya D, Suits AG. Multichannel dynamics in the OH+ n-butane reaction revealed by crossed-beam slice imaging and quasiclassical trajectory calculations. J Chem Phys 2020; 153:014302. [PMID: 32640816 DOI: 10.1063/5.0013585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multidimensional reactions present various channels that can exhibit very different dynamics and give products of varying subsequent reactivity. Here, we present a combination of experiment and theory to reveal the dynamics of hydrogen abstraction by OH radical at primary and secondary sites in n-butane at a collision energy of 8 kcal/mol. Crossed molecular beam slice imaging experiments unequivocally probe the secondary abstraction channel showing backward angular distributions with mild energy release to product translation, which are accurately captured by trajectory calculations using a specific-reaction-parameter Hamiltonian. Experiments containing both reaction channels indicate a less marked backward character in the angular distribution, whose origin is shown by trajectory calculations to appear as an evolution toward more sideways scattering from the secondary to primary channel. While the two channels have markedly different angular distributions, their energy release is largely comparable, showing ample energy release into the water product. The synergistic combination of crossed-beam imaging and trajectories opens the door to detailed reaction-dynamics studies of chemical reactions with ever-increasing complexity.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Diego Troya
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
12
|
Espinosa-Garcia J, García-Chamorro M, Corchado JC. Rethinking the description of water product in polyatomic OH/OD + XH (X ≡ D, Br, NH2 and GeH3) reactions: theory/experimental comparison. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-2577-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Gruber B, Czakó G. Benchmark ab initio characterization of the abstraction and substitution pathways of the OH + CH4/C2H6 reactions. Phys Chem Chem Phys 2020; 22:14560-14569. [DOI: 10.1039/d0cp02560g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report benchmark ab initio stationary-point properties for the hydrogen-abstraction, hydrogen-substitution, and methyl-substitution pathways of the OH + CH4/C2H6 reactions.
Collapse
Affiliation(s)
- Balázs Gruber
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| |
Collapse
|
14
|
Rangel C, Garcia-Chamorro M, Corchado JC, Espinosa-Garcia J. Kinetics and dynamics study of the OH + C 2H 6 → H 2O + C 2H 5 reaction based on an analytical global potential energy surface. Phys Chem Chem Phys 2020; 22:14796-14810. [PMID: 32578642 DOI: 10.1039/d0cp02776f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To describe the gas-phase hydrogen abstraction reaction between the hydroxyl radical and the ethane molecule, an analytical full-dimensional potential energy surface was developed within the Born-Oppenheimer approximation. This reactive process is a ten-body system with 24 degrees of freedom, which represents a theoretical challenge. The new surface, named PES-2020, presents low barrier, 3.76 kcal mol-1, high exothermicity, -16.20 kcal mol-1, and intermediate complexes in the entrance and exit channels. To test the quality and accuracy of the analytical surface several stringent tests were performed and, in general, PES-2020 reasonably simulates the theoretical information used as input, it is a continuous and smooth potential, without spurious minima, it presents great versatility and a reasonable description of this ten-body reaction. Based on this surface, an exhaustive kinetics and dynamics study was performed with a double objective: to analyze the capacity of the new surface to simulate the experimental evidence, and to help understand the mechanism of reaction and the role of the ethyl group in the reaction. In the kinetics study, three approaches were used: variational transition-state theory with multidimensional tunnelling (VTST/MT), ring polymer molecular dynamics (RPMD) and quasi-classical trajectory (QCT) results, in the temperature range 200-2000 K. There is general agreement between the three approaches and they reasonably simulate the experimental behaviour, which gives confidence to the fitness of the new surface to describe the system. In the dynamics study, QCT calculations were performed at 298 K for a direct comparison with the only experimental result reported. We found that ethyl fragment presents a noticeable internal energy (∼20%) and so cannot be considered as a spectator. The water product vibrational energy is reasonably reproduced, though when a level-by-level distribution is analyzed the agreement is only qualitative.
Collapse
Affiliation(s)
- C Rangel
- Departamento de Química Física and Instituto de Computación Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain.
| | - M Garcia-Chamorro
- Departamento de Química Física and Instituto de Computación Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain.
| | - J C Corchado
- Departamento de Química Física and Instituto de Computación Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain.
| | - J Espinosa-Garcia
- Departamento de Química Física and Instituto de Computación Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain.
| |
Collapse
|
15
|
Espinosa-Garcia J, Corchado JC, Butkovskaya NI, Setser DW. Theoretical and experimental revision of the water bending excitation in the OH/OD + GeH4 reactions. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2506-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Butkovskaya NI, Setser DW. Rate constants and vibrational distributions for water‐forming reactions of OH and OD radicals with thioacetic acid, 1,2‐ethanedithiol and tert‐butanethiol. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- N. I. Butkovskaya
- Semenov Institute of Chemical PhysicsRussian Academy of Sciences Moscow Russian Federation
| | - D. W. Setser
- Department of ChemistryKansas State University Manhattan Kansas
| |
Collapse
|
17
|
Butkovskaya NI, Setser DW. Infrared Chemiluminescence Study of the Reaction of Hydroxyl Radical with Formamide and the Secondary Unimolecular Reaction of Chemically Activated Carbamic Acid. J Phys Chem A 2018; 122:3735-3746. [PMID: 29614222 DOI: 10.1021/acs.jpca.8b01512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactions of OH and OD radicals with NH2CHO and ND2CHO were studied by Fourier transform infrared emission spectroscopy of the product molecules from a fast-flow reactor at 298 K. Vibrational distributions of the HOD and H2O molecules from the primary reactions with the C-H bond were obtained by computer simulation of the emission spectra. The vibrational distributions resemble those for other direct H atom abstraction reactions, such as with acetaldehyde. The highest observed level gives an estimate of the C-H bond dissociation energy in formamide of 90.5 ± 1.3 kcal mol-1. Observation of CO2, ammonia, and secondary water chemiluminescence gave evidence that recombination of OH and NH2CO forms carbamic acid (NH2COOH) with excitation energy of 103 kcal mol-1, which decomposes through two pathways forming either NH3 + CO2 or H2O + HNCO. The branching fraction for ammonia formation was estimated to be 2-3 times larger than formation of water. This observation was confirmed by RRKM calculation of the decomposition rate constants. A new simulation method was developed to analyze infrared emission from NH3, NH2D, ND2H, and ND3. Dynamical aspects of the primary and secondary reactions are discussed based on the vibrational distributions of CO2 and those of H/D isotopes of water and ammonia.
Collapse
Affiliation(s)
- N I Butkovskaya
- Semenov Institute of Chemical Physics, Russian Academy of Sciences , 119991 Moscow , Russian Federation
| | - D W Setser
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , United States
| |
Collapse
|
18
|
Espinosa-Garcia J, Corchado JC. QCT dynamics study of OH/OD + GeH4 reactions. The problem of water bending excitation. Phys Chem Chem Phys 2017; 19:1580-1589. [DOI: 10.1039/c6cp08118e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The difficulties in the description of the water bending population could be related to the zero-point violation problem in QCT calculations.
Collapse
Affiliation(s)
- J. Espinosa-Garcia
- Departamento de Quimica Fisica and Instituto de Computación Científica Avanzada (ICCAEx)
- Universidad de Extremadura
- 06071 Badajoz
- Spain
| | - J. C. Corchado
- Departamento de Quimica Fisica and Instituto de Computación Científica Avanzada (ICCAEx)
- Universidad de Extremadura
- 06071 Badajoz
- Spain
| |
Collapse
|
19
|
Butkovskaya NI, Setser DW. Branching Ratios and Vibrational Distributions in Water-Forming Reactions of OH and OD Radicals with Methylamines. J Phys Chem A 2016; 120:6698-711. [PMID: 27504785 DOI: 10.1021/acs.jpca.6b06411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactions of OH and OD radicals with (CH3)3N, (CH3)2NH, and CH3NH2 were studied by Fourier transform infrared emission spectroscopy (FTIR) of the water product molecules from a fast-flow reactor at 298 K. The rate constants (4.4 ± 0.5) × 10(-11), (5.2 ± 0.8) × 10(-11), and (2.0 ± 0.4) × 10(-11) cm(3) molecule(-1) s(-1) were determined for OD + (CH3)3N, (CH3)2NH, and CH3NH2, respectively, by comparing the HOD emission intensities to the HOD intensity from the OD reaction with H2S. Abstraction from the nitrogen site competes with abstraction from the methyl group, as obtained from an analysis of the HOD and D2O emission intensities from the OD reactions with the deuterated reactants, (CD3)2NH and CD3NH2. After adjustment for the hydrogen-deuterium kinetic isotope effect, the product branching fractions of the hydrogen abstraction from the nitrogen for di- and monomethylamine were found to be 0.34 ± 0.04 and 0.26 ± 0.05, respectively. Vibrational distributions of the H2O, HOD, and D2O molecules are typical for direct hydrogen atom abstraction from polar molecules, even though activation energies are negative because of the formation of pre-transition-state complexes. Comparison is made to the reactions of hydroxyl radicals with ammonia and with other compounds with primary C-H bonds to discuss specific features of disposal of energy to water product.
Collapse
Affiliation(s)
- N I Butkovskaya
- Semenov Institute of Chemical Physics, Russian Academy of Sciences , 119991 Moscow, Russian Federation
| | - D W Setser
- Department of Chemistry, Kansas State University , Manhattan, Kansas 66506, United States
| |
Collapse
|
20
|
Espinosa-Garcia J, Rangel C, Corchado JC. Rate constant calculations of the GeH4 + OH/OD → GeH3 + H2O/HOD reactions using an ab initio based full-dimensional potential energy surface. Phys Chem Chem Phys 2016; 18:16941-9. [DOI: 10.1039/c6cp02986h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2D representation of the analytical potential energy surface. The saddle point and the complexes in the entry and exit channels are included.
Collapse
Affiliation(s)
- J. Espinosa-Garcia
- Departamento de Quimica Fisica and Instituto de Computación Científica Avanzada
- Universidad de Extremadura
- 06071 Badajoz
- Spain
| | - C. Rangel
- Departamento de Quimica Fisica and Instituto de Computación Científica Avanzada
- Universidad de Extremadura
- 06071 Badajoz
- Spain
| | - J. C. Corchado
- Departamento de Quimica Fisica and Instituto de Computación Científica Avanzada
- Universidad de Extremadura
- 06071 Badajoz
- Spain
| |
Collapse
|
21
|
Espinosa-Garcia J, Rangel C, Corchado JC. Vibrational, rotational and translational effects on the OH(v, j) + CH4(v 1, v 2, v 3, v 4) dynamics reaction: a quasi-classical trajectory study. Theor Chem Acc 2015. [DOI: 10.1007/s00214-015-1775-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Espinosa-Garcia J, Corchado JC. Product Translational and Vibrational Distributions for the OH/OD + CH4/CD4 Reactions from Quasiclassical Trajectory Calculations. Comparison with Experiment. J Phys Chem B 2015; 120:1446-53. [DOI: 10.1021/acs.jpcb.5b04290] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joaquin Espinosa-Garcia
- Departamento de Química
Física, Universidad de Extremadura, Avenida de Elvas S/N, 06071 Badajoz, Spain
| | - Jose C. Corchado
- Departamento de Química
Física, Universidad de Extremadura, Avenida de Elvas S/N, 06071 Badajoz, Spain
| |
Collapse
|
23
|
Espinosa-Garcia J, Corchado J, Bonnet L. Quasi-classical trajectory study of the water vibrational distribution for the polyatomic OH/OD+NH3 reactions: Comparison with experiment. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2014.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Monge-Palacios M, Corchado JC, Espinosa-Garcia J. Dynamics study of the OH + NH3 hydrogen abstraction reaction using QCT calculations based on an analytical potential energy surface. J Chem Phys 2014; 138:214306. [PMID: 23758370 DOI: 10.1063/1.4808109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To understand the reactivity and mechanism of the OH + NH3 → H2O + NH2 gas-phase reaction, which evolves through wells in the entrance and exit channels, a detailed dynamics study was carried out using quasi-classical trajectory calculations. The calculations were performed on an analytical potential energy surface (PES) recently developed by our group, PES-2012 [Monge-Palacios et al. J. Chem. Phys. 138, 084305 (2013)]. Most of the available energy appeared as H2O product vibrational energy (54%), reproducing the only experimental evidence, while only the 21% of this energy appeared as NH2 co-product vibrational energy. Both products appeared with cold and broad rotational distributions. The excitation function (constant collision energy in the range 1.0-14.0 kcal mol(-1)) increases smoothly with energy, contrasting with the only theoretical information (reduced-dimensional quantum scattering calculations based on a simplified PES), which presented a peak at low collision energies, related to quantized states. Analysis of the individual reactive trajectories showed that different mechanisms operate depending on the collision energy. Thus, while at high energies (E(coll) ≥ 6 kcal mol(-1)) all trajectories are direct, at low energies about 20%-30% of trajectories are indirect, i.e., with the mediation of a trapping complex, mainly in the product well. Finally, the effect of the zero-point energy constraint on the dynamics properties was analyzed.
Collapse
Affiliation(s)
- M Monge-Palacios
- Departamento de Química Física, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | |
Collapse
|
25
|
Monge-Palacios M, Rangel C, Espinosa-Garcia J. Ab initio based potential energy surface and kinetics study of the OH + NH3 hydrogen abstraction reaction. J Chem Phys 2013; 138:084305. [PMID: 23464149 DOI: 10.1063/1.4792719] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A full-dimensional analytical potential energy surface (PES) for the OH + NH3 → H2O + NH2 gas-phase reaction was developed based exclusively on high-level ab initio calculations. This reaction presents a very complicated shape with wells along the reaction path. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction path, and points on the reaction swath) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the coupled-cluster single double triple (CCSD(T)) = FULL/aug-cc-pVTZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000 K. The forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. However, the detailed analysis of the experimental equilibrium constants (from which the reverse rate constants are obtained) permits us to conclude that the experimental reverse rate constants must be re-evaluated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs), which were not included in the fitting procedure. The KIEs reproduce the values obtained from ab initio calculations in the common temperature range, although unfortunately no experimental information is available for comparison.
Collapse
Affiliation(s)
- M Monge-Palacios
- Departamento de Química Física, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | |
Collapse
|
26
|
Monge-Palacios M, Espinosa-Garcia J. Role of Vibrational and Translational Energy in the OH + NH3 Reaction: A Quasi-Classical Trajectory Study. J Phys Chem A 2013; 117:5042-51. [DOI: 10.1021/jp403571y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Monge-Palacios
- Departamento de Química
Física, Universidad de Extremadura, 06071 Badajoz, Spain
| | - J. Espinosa-Garcia
- Departamento de Química
Física, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
27
|
Monge-Palacios M, Espinosa-Garcia J. Bond and mode selectivity in the OH + NH2D reaction: a quasi-classical trajectory calculation. Phys Chem Chem Phys 2013; 15:19180-90. [DOI: 10.1039/c3cp52809j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Qian G, Gao JP, Wang ZY. Near-infrared chemiluminescence tunable from 900 nm to 1700 nm from narrow-bandgap compounds and polymers. Chem Commun (Camb) 2012; 48:6426. [PMID: 22618229 DOI: 10.1039/c2cc32624h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Near-infrared chemiluminescence tunable from 900 nm to 1700 nm was realized from the reaction of the narrow-bandgap compounds and polymers with oxalyl chloride and hydrogen peroxide. A prolonged chemiluminescent process can be achieved in solutions at low temperature or in polymer gels at room temperature.
Collapse
Affiliation(s)
- Gang Qian
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, CanadaK1S 5B6.
| | | | | |
Collapse
|
29
|
Ferguson HA, Parworth CL, Holloway TB, Midgett AG, Heard GL, Setser DW, Holmes BE. Characterization of the unimolecular water elimination reaction from 1-propanol, 3,3,3-propan-1-ol-d3, 3,3,3-trifluoropropan-1-ol, and 3-chloropropan-1-ol. J Phys Chem A 2009; 113:10013-23. [PMID: 19702256 DOI: 10.1021/jp905012r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unimolecular reactions of 1-propanol, 3,3,3-propan-1-ol-d3, 3,3,3-trifluoropropan-1-ol, and 3-chloropropan-1-ol have been studied by the chemical activation technique. The recombination of CH3, CD3, CF3, and CH2Cl radicals with CH2CH2OH radicals at room temperature was used to generate vibrationally excited CH3CH2CH2OH, CD3CH2CH2OH, CF3CH2CH2OH, and CH2ClCH2CH2OH molecules. The principal unimolecular reaction for propanol and propanol-d3 with 90 kcal mol(-1) of vibrational energy is 1,2-H2O elimination with rate constants of 3.4 x 10(5) and 1.4 x 10(5) s(-1), respectively. For CH2ClCH2CH2OH also with 90 kcal mol(-1) of energy, 2,3-HCl elimination with a rate constant of 3.0 x 10(7) s(-1) is more important than 1,2-H2O elimination; the branching fractions are 0.95 and 0.05. For CF3CH2CH2OH with an energy of 102 kcal mol(-1), 1,2-H2O elimination has a rate constant of 7.9 x 10(5) and 2,3-HF elimination has a rate constant of 2.6 x 10(5) s(-1). Density functional theory was used to obtain models for the molecules and their transition states. The frequencies and moments of inertia from these models were used to calculate RRKM rate constants, which were used to assign threshold energies by comparing calculated and experimental rate constants. This comparison gives the threshold energy for H2O elimination from 1-propanol as 64 kcal mol(-1). The threshold energies for 1,2-H2O and 2,3-HCl elimination from CH2ClCH2CH2OH were 59 and 54 kcal mol(-1), respectively. The threshold energies for H2O and HF elimination from CF3CH2CH2OH are 62 and 70 kcal mol(-1), respectively. The structures of the transition states for elimination of HF, HCl, and H2O are compared.
Collapse
|
30
|
Affiliation(s)
- Wujian Miao
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
| |
Collapse
|
31
|
Gonzalez-García N, Gonzalez-Lafont A, Lluch JM. Methanesulfinic Acid Reaction with OH: Mechanism, Rate Constants, and Atmospheric Implications. J Phys Chem A 2007; 111:7825-32. [PMID: 17636968 DOI: 10.1021/jp0722455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mechanism for the atmospheric oxidation of methanesulfinic acid (MSIA) has been studied. This is the first theoretical study of the reaction between MSIA and the OH radical. All the possible channels in this reaction have been studied theoretically, and their corresponding rate constants have been evaluated under the variational transition-state theory (VTST) formalism. Two different products can be formed: the CH3S(O)2 radical (which had been experimentally proposed as the only one), and sulfurous acid (H2SO3). The CH3S(O)2 radical can be formed directly or can form via an intermediate adduct, which yields to the radical through the elimination of a water molecule. For the first time, it is theoretically demonstrated that SO2 is formed in the addition channel of the DMS + OH reaction. The consequences of this result in the interpretation of the T-dependence of the SO4(2-)/MSA (methanesulfonic acid) quocient are analyzed. The competition between the unimolecular dissociation of the CH3S(O)2 radical and OH-addition to yield MSA is proposed as one of the possible multiple branching points (along the DMS + OH degradation scheme) influencing the T-dependence of the SO4(2-)/MSA relation.
Collapse
Affiliation(s)
- Núria Gonzalez-García
- Departament de Química, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
32
|
Zwier TS. Laser Probes of Conformational Isomerization in Flexible Molecules and Complexes. J Phys Chem A 2006; 110:4133-50. [PMID: 16553364 DOI: 10.1021/jp056390z] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecules with several flexible coordinates have potential energy surfaces with a large number of minima and many transition states separating them. A general experimental protocol is described that is capable of studying conformational isomerization in such circumstances, measuring the product quantum yields following conformation-specific infrared excitation, and measuring energy thresholds for isomerization of specific X --> Y reactant-product isomer pairs following excitation via stimulated emission pumping (SEP). These methods have been applied to a series of molecules of varying size and conformational complexity, including 3-indolepropionic acid (IPA), meta-ethynylstyrene, N-acetyltryptophan methyl amide (NATMA), N-acetyltryptophan amide (NATA), and melatonin. Studies of isomerization in solute-solvent complexes are also described, including a measurement of the barrier to isomerization in the IPA-H2O complex, and a unique isomerization reaction in which a single water molecule is shuttled between H-bonding sites on the trans-formanilide (TFA) molecule.
Collapse
Affiliation(s)
- Timothy S Zwier
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, USA.
| |
Collapse
|
33
|
Muiño PL. The OH* + CH3SH reaction: support for an addition-elimination mechanism from ab initio calculations. J Comput Chem 2005; 26:612-8. [PMID: 15739193 DOI: 10.1002/jcc.20195] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several intermediates for the CH(3)SH + OH(*) --> CH(3)S(*) + H(2)O reaction were identified using MP2(full) 6-311+g(2df,p) ab initio calculations. An adduct, CH(3)S(H)OH(*), I, with electronic energy 13.63 kJ mol(-1) lower than the reactants, and a transition state, II(double dagger), located 5.14 kJ mol(-1) above I, are identified as the entrance channel for an addition-elimination reaction mechanism. After adding zero-point and thermal energies, DeltaH(r,298) ( degrees )(reactants --> I) = -4.85 kJ mol(-1) and DeltaH(298) (double dagger)(I --> II(double dagger)) = +0.10 kJ mol(-1), which indicates that the potential energy surface is broad and flat near the transition state. The calculated imaginary vibrational frequency of the transition state, 62i cm(-1), is also consistent with an addition-elimination mechanism. These calculations are consistent with experimental observations of the OH(*) + CH(3)SH reaction that favored an addition-elimination mechanism rather than direct hydrogen atom abstraction. An alternative reaction, CH(3)SH + OH(*) --> CH(3)SOH + H(*), with DeltaH(r,298) ( degrees ) = +56.94 kJ mol(-1) was also studied, leading to a determination of DeltaH(f,298) ( degrees )(CH(3)SOH) = -149.8 kJ mol(-1).
Collapse
Affiliation(s)
- Pedro L Muiño
- Department of Chemistry, Mathematics and Physical Sciences, Saint Francis University, P.O. Box 600, Loretto, Pennsylvania 15940, USA.
| |
Collapse
|
34
|
Francis PS, Barnett NW, Smith TA, Spizzirri PG, Wang X, Krausz E. Near-infrared chemiluminescence from the oxidation of ammonia in aqueous alkaline solution. LUMINESCENCE 2005; 20:442-4. [PMID: 15966057 DOI: 10.1002/bio.870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The chemiluminescent oxidation of ammonia with hypobromite in aqueous alkaline solution evokes a broadly distributed emission in the near-infrared region, with intensity maxima at 1055 nm and 1270 nm.
Collapse
Affiliation(s)
- Paul S Francis
- School of Biological and Chemical Sciences, Deakin University, Geelong, Victoria 3217, Australia.
| | | | | | | | | | | |
Collapse
|