1
|
Iyer SS, Srivastava A. Membrane lateral organization from potential energy disconnectivity graph. Biophys Chem 2024; 313:107284. [PMID: 39002248 DOI: 10.1016/j.bpc.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024]
Abstract
Understanding the thermodynamic and kinetic properties of biomolecules requires elucidation of their complex energy landscape. A disconnectivity graph analysis of the energy landscape provides a framework for mapping the multi-dimensional landscape onto a two-dimensional representation while preserving the key features of the energy landscape. Several studies show that the structure or shape of the disconnectity graph is directly associated with the function of protein and nucleic acid molecules. In this review, we discuss how disconnectivity analysis of the potential energy surface can be extended to lipid molecules to glean important information about membrane organization. The shape of the disconnectivity graphs can be used to predict the lateral organization of multi-component lipid bilayer. We hope that this review encourages the use of disconnectivity graphs routinely by membrane biophysicists to predict the lateral organization of lipids.
Collapse
Affiliation(s)
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, C. V. Raman Road, Bangalore, Karnataka 560012, India.
| |
Collapse
|
2
|
Schön JC. Energy landscapes-Past, present, and future: A perspective. J Chem Phys 2024; 161:050901. [PMID: 39101536 DOI: 10.1063/5.0212867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/17/2024] [Indexed: 08/06/2024] Open
Abstract
Energy landscapes and the closely related cost function landscapes have been recognized in science, mathematics, and various other fields such as economics as being highly useful paradigms and tools for the description and analysis of the properties of many systems, ranging from glasses, proteins, and abstract global optimization problems to business models. A multitude of algorithms for the exploration and exploitation of such landscapes have been developed over the past five decades in the various fields of applications, where many re-inventions but also much cross-fertilization have occurred. Twenty-five years ago, trying to increase the fruitful interactions between workers in different fields led to the creation of workshops and small conferences dedicated to the study of energy landscapes in general instead of only focusing on specific applications. In this perspective, I will present some history of the development of energy landscape studies and try to provide an outlook on in what directions the field might evolve in the future and what larger challenges are going to lie ahead, both from a conceptual and a practical point of view, with the main focus on applications of energy landscapes in chemistry and physics.
Collapse
Affiliation(s)
- J C Schön
- Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany
| |
Collapse
|
3
|
Takahashi S, Iuchi S, Hiraoka S, Sato H. Theoretical and computational methodologies for understanding coordination self-assembly complexes. Phys Chem Chem Phys 2023; 25:14659-14671. [PMID: 37051715 DOI: 10.1039/d3cp00082f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
This perspective highlights three theoretical and computational methods to capture the coordination self-assembly processes at the molecular level: quantum chemical modeling, molecular dynamics, and reaction network analysis. These methods cover the different scales from the metal-ligand bond to a more global aspect, and approaches that are best suited to understand the coordination self-assembly from different perspectives are introduced. Theoretical and numerical researches based on these methods are not merely ways of interpreting the experimental studies but complementary to them.
Collapse
Affiliation(s)
- Satoshi Takahashi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Satoru Iuchi
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
4
|
Brooks A, Jenkins SJ, Wrabetz S, McGregor J, Sacchi M. The dehydrogenation of butane on metal-free graphene. J Colloid Interface Sci 2022; 619:377-387. [DOI: 10.1016/j.jcis.2022.03.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
|
5
|
Yang X, Lu ZY. Nanoparticle cluster formation mechanisms elucidated via Markov state modeling: Attraction range effects, aggregation pathways, and counterintuitive transition rates. J Chem Phys 2022; 156:214902. [DOI: 10.1063/5.0086110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nanoparticle clusters are promising candidates for developing functional materials. However, it is still a challenging task to fabricate them in a predictable and controllable way, which requires investigation of the possible mechanisms underlying cluster formation at the nanoscale. By constructing Markov state models (MSMs) at the microstate level, we find that for highly dispersed particles to form a highly aggregated cluster, there are multiple coexisting pathways, which correspond to direct aggregation, or pathways that need to pass through partially aggregated, intermediate states. Varying the range of attraction between nanoparticles is found to significantly affect pathways. As the attraction range becomes narrower, compared to direct aggregation, some pathways that need to pass through partially aggregated intermediate states become more competitive. In addition, from MSMs constructed at the macrostate level, the aggregation rate is found to be counterintuitively lower with a lower free-energy barrier, which is also discussed.
Collapse
Affiliation(s)
- Xi Yang
- Institute of Theoretical Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130021, China
| | - Zhong-Yuan Lu
- Institute of Theoretical Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130021, China
| |
Collapse
|
6
|
Dicks L, Wales DJ. Elucidating the solution structure of the K-means cost function using energy landscape theory. J Chem Phys 2022; 156:054109. [DOI: 10.1063/5.0078793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- L. Dicks
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - D. J. Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
7
|
Sharpe DJ, Wales DJ. Nearly reducible finite Markov chains: Theory and algorithms. J Chem Phys 2021; 155:140901. [PMID: 34654307 DOI: 10.1063/5.0060978] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Finite Markov chains, memoryless random walks on complex networks, appear commonly as models for stochastic dynamics in condensed matter physics, biophysics, ecology, epidemiology, economics, and elsewhere. Here, we review exact numerical methods for the analysis of arbitrary discrete- and continuous-time Markovian networks. We focus on numerically stable methods that are required to treat nearly reducible Markov chains, which exhibit a separation of characteristic timescales and are therefore ill-conditioned. In this metastable regime, dense linear algebra methods are afflicted by propagation of error in the finite precision arithmetic, and the kinetic Monte Carlo algorithm to simulate paths is unfeasibly inefficient. Furthermore, iterative eigendecomposition methods fail to converge without the use of nontrivial and system-specific preconditioning techniques. An alternative approach is provided by state reduction procedures, which do not require additional a priori knowledge of the Markov chain. Macroscopic dynamical quantities, such as moments of the first passage time distribution for a transition to an absorbing state, and microscopic properties, such as the stationary, committor, and visitation probabilities for nodes, can be computed robustly using state reduction algorithms. The related kinetic path sampling algorithm allows for efficient sampling of trajectories on a nearly reducible Markov chain. Thus, all of the information required to determine the kinetically relevant transition mechanisms, and to identify the states that have a dominant effect on the global dynamics, can be computed reliably even for computationally challenging models. Rare events are a ubiquitous feature of realistic dynamical systems, and so the methods described herein are valuable in many practical applications.
Collapse
Affiliation(s)
- Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
8
|
Sharpe DJ, Wales DJ. Numerical analysis of first-passage processes in finite Markov chains exhibiting metastability. Phys Rev E 2021; 104:015301. [PMID: 34412280 DOI: 10.1103/physreve.104.015301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/29/2021] [Indexed: 12/19/2022]
Abstract
We describe state-reduction algorithms for the analysis of first-passage processes in discrete- and continuous-time finite Markov chains. We present a formulation of the graph transformation algorithm that allows for the evaluation of exact mean first-passage times, stationary probabilities, and committor probabilities for all nonabsorbing nodes of a Markov chain in a single computation. Calculation of the committor probabilities within the state-reduction formalism is readily generalizable to the first hitting problem for any number of alternative target states. We then show that a state-reduction algorithm can be formulated to compute the expected number of times that each node is visited along a first-passage path. Hence, all properties required to analyze the first-passage path ensemble (FPPE) at both a microscopic and macroscopic level of detail, including the mean and variance of the first-passage time distribution, can be computed using state-reduction methods. In particular, we derive expressions for the probability that a node is visited along a direct transition path, which proceeds without returning to the initial state, considering both the nonequilibrium and equilibrium (steady-state) FPPEs. The reactive visitation probability provides a rigorous metric to quantify the dynamical importance of a node for the productive transition between two endpoint states and thus allows the local states that facilitate the dominant transition mechanisms to be readily identified. The state-reduction procedures remain numerically stable even for Markov chains exhibiting metastability, which can be severely ill-conditioned. The rare event regime is frequently encountered in realistic models of dynamical processes, and our methodology therefore provides valuable tools for the analysis of Markov chains in practical applications. We illustrate our approach with numerical results for a kinetic network representing a structural transition in an atomic cluster.
Collapse
Affiliation(s)
- Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, and Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, and Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
9
|
Sharpe DJ, Wales DJ. Graph transformation and shortest paths algorithms for finite Markov chains. Phys Rev E 2021; 103:063306. [PMID: 34271741 DOI: 10.1103/physreve.103.063306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
The graph transformation (GT) algorithm robustly computes the mean first-passage time to an absorbing state in a finite Markov chain. Here we present a concise overview of the iterative and block formulations of the GT procedure and generalize the GT formalism to the case of any path property that is a sum of contributions from individual transitions. In particular, we examine the path action, which directly relates to the path probability, and analyze the first-passage path ensemble for a model Markov chain that is metastable and therefore numerically challenging. We compare the mean first-passage path action, obtained using GT, with the full path action probability distribution simulated efficiently using kinetic path sampling, and with values for the highest-probability paths determined by the recursive enumeration algorithm (REA). In Markov chains representing realistic dynamical processes, the probability distributions of first-passage path properties are typically fat-tailed and therefore difficult to converge by sampling, which motivates the use of exact and numerically stable approaches to compute the expectation. We find that the kinetic relevance of the set of highest-probability paths depends strongly on the metastability of the Markov chain, and so the properties of the dominant first-passage paths may be unrepresentative of the global dynamics. Use of a global measure for edge costs in the REA, based on net productive fluxes, allows the total reactive flux to be decomposed into a finite set of contributions from simple flux paths. By considering transition flux paths, a detailed quantitative analysis of the relative importance of competing dynamical processes is possible even in the metastable regime.
Collapse
Affiliation(s)
- Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
10
|
Biddle JW, Martinez-Corral R, Wong F, Gunawardena J. Allosteric conformational ensembles have unlimited capacity for integrating information. eLife 2021; 10:e65498. [PMID: 34106049 PMCID: PMC8189718 DOI: 10.7554/elife.65498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
Integration of binding information by macromolecular entities is fundamental to cellular functionality. Recent work has shown that such integration cannot be explained by pairwise cooperativities, in which binding is modulated by binding at another site. Higher-order cooperativities (HOCs), in which binding is collectively modulated by multiple other binding events, appear to be necessary but an appropriate mechanism has been lacking. We show here that HOCs arise through allostery, in which effective cooperativity emerges indirectly from an ensemble of dynamically interchanging conformations. Conformational ensembles play important roles in many cellular processes but their integrative capabilities remain poorly understood. We show that sufficiently complex ensembles can implement any form of information integration achievable without energy expenditure, including all patterns of HOCs. Our results provide a rigorous biophysical foundation for analysing the integration of binding information through allostery. We discuss the implications for eukaryotic gene regulation, where complex conformational dynamics accompanies widespread information integration.
Collapse
Affiliation(s)
- John W Biddle
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
| | | | - Felix Wong
- Institute for Medical Engineering and Science, Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
11
|
Kannan D, Sharpe DJ, Swinburne TD, Wales DJ. Optimal dimensionality reduction of Markov chains using graph transformation. J Chem Phys 2020; 153:244108. [PMID: 33380101 DOI: 10.1063/5.0025174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Markov chains can accurately model the state-to-state dynamics of a wide range of complex systems, but the underlying transition matrix is ill-conditioned when the dynamics feature a separation of timescales. Graph transformation (GT) provides a numerically stable method to compute exact mean first passage times (MFPTs) between states, which are the usual dynamical observables in continuous-time Markov chains (CTMCs). Here, we generalize the GT algorithm to discrete-time Markov chains (DTMCs), which are commonly estimated from simulation data, for example, in the Markov state model approach. We then consider the dimensionality reduction of CTMCs and DTMCs, which aids model interpretation and facilitates more expensive computations, including sampling of pathways. We perform a detailed numerical analysis of existing methods to compute the optimal reduced CTMC, given a partitioning of the network into metastable communities (macrostates) of nodes (microstates). We show that approaches based on linear algebra encounter numerical problems that arise from the requisite metastability. We propose an alternative approach using GT to compute the matrix of intermicrostate MFPTs in the original Markov chain, from which a matrix of weighted intermacrostate MFPTs can be obtained. We also propose an approximation to the weighted-MFPT matrix in the strongly metastable limit. Inversion of the weighted-MFPT matrix, which is better conditioned than the matrices that must be inverted in alternative dimensionality reduction schemes, then yields the optimal reduced Markov chain. The superior numerical stability of the GT approach therefore enables us to realize optimal Markovian coarse-graining of systems with rare event dynamics.
Collapse
Affiliation(s)
- Deepti Kannan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Thomas D Swinburne
- Aix-Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy, 13288 Marseille, France
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
12
|
Wang H, Jing Z, Liu H, Feng X, Meng G, Wu K, Cheng Y, Xiao B. A high-throughput assessment of the adsorption capacity and Li-ion diffusion dynamics in Mo-based ordered double-transition-metal MXenes as anode materials for fast-charging LIBs. NANOSCALE 2020; 12:24510-24526. [PMID: 33320160 DOI: 10.1039/d0nr05828a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Utilizing the latest SCAN-rVV10 density functional, we thoroughly assess the electrochemical properties of 35 Mo-based ordered double transition metal MXenes, including clean Mo2MC2 (M = Sc, Ti, V, Zr, Nb, Hf, Ta) and surface functionalized structures Mo2MC2T2 (T = H, O, F and OH), for the potential use as anode materials in lithium ion batteries (LIBs). The first principles molecular dynamics simulations in combination with the calculations of the site adsorption preferences for Li atoms on all investigated MXenes reveal that both Li-saturated adsorption structures and theoretical capacities of Mo-based MXenes are fundamentally influenced by the surface terminations. We find that the adsorption of Li atoms on either -OH or -F functionalized MXenes is chemically unstable. In particular, the F-groups prefer to form a separate fluoride layer with Li atoms, detaching from the Mo2MC2 substrates. The Li atoms could form a stable single adsorption layer on the -H, -O and intrinsic MXenes surface, exhibiting theoretical capacities in the range from 121 mA h g-1 to 195 mA h g-1. Besides -F and -OH terminations, the remaining Mo-based MXenes also possess superior flat open circuit voltage (OCV) profiles with the most reversible storage capacity below 1.0 V during the charging/discharging cycles. We further predict the low barrier heights of Li-ion diffusion, at a range of 0.03-0.06 eV for most Mo-based MXenes except -O and -H terminations, exceeding that of graphene or Ti3C2. Furthermore, combining the Vineyard transition state theory (TST) with the phonon spectra obtained from density functional perturbation theory (DFPT), the mean planar diffusion coefficient is calculated to be 2 × 10-8 m2 s-1 at 300 K for intrinsic Mo2MC2 monolayers. Although the overall specific capacity is fundamentally restricted with the relatively heavy molecular mass of MXenes, we conclude that Mo-based structures, especially the intrinsic Mo2MC2 (M = Sc, Ti, V) monolayers, might be promising anode materials from the aspect of fast charging/discharging application for LIBs.
Collapse
Affiliation(s)
- Hangyu Wang
- School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gloaguen E, Mons M, Schwing K, Gerhards M. Neutral Peptides in the Gas Phase: Conformation and Aggregation Issues. Chem Rev 2020; 120:12490-12562. [PMID: 33152238 DOI: 10.1021/acs.chemrev.0c00168] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Combined IR and UV laser spectroscopic techniques in molecular beams merged with theoretical approaches have proven to be an ideal tool to elucidate intrinsic structural properties on a molecular level. It offers the possibility to analyze structural changes, in a controlled molecular environment, when successively adding aggregation partners. By this, it further makes these techniques a valuable starting point for a bottom-up approach in understanding the forces shaping larger molecular systems. This bottom-up approach was successfully applied to neutral amino acids starting around the 1990s. Ever since, experimental and theoretical methods developed further, and investigations could be extended to larger peptide systems. Against this background, the review gives an introduction to secondary structures and experimental methods as well as a summary on theoretical approaches. Vibrational frequencies being characteristic probes of molecular structure and interactions are especially addressed. Archetypal biologically relevant secondary structures investigated by molecular beam spectroscopy are described, and the influences of specific peptide residues on conformational preferences as well as the competition between secondary structures are discussed. Important influences like microsolvation or aggregation behavior are presented. Beyond the linear α-peptides, the main results of structural analysis on cyclic systems as well as on β- and γ-peptides are summarized. Overall, this contribution addresses current aspects of molecular beam spectroscopy on peptides and related species and provides molecular level insights into manifold issues of chemical and biochemical relevance.
Collapse
Affiliation(s)
- Eric Gloaguen
- CEA, CNRS, Université Paris-Saclay, CEA Paris-Saclay, Bât 522, 91191 Gif-sur-Yvette, France
| | - Michel Mons
- CEA, CNRS, Université Paris-Saclay, CEA Paris-Saclay, Bât 522, 91191 Gif-sur-Yvette, France
| | - Kirsten Schwing
- TU Kaiserslautern & Research Center Optimas, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
| | - Markus Gerhards
- TU Kaiserslautern & Research Center Optimas, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
| |
Collapse
|
14
|
Swinburne TD, Kannan D, Sharpe DJ, Wales DJ. Rare events and first passage time statistics from the energy landscape. J Chem Phys 2020; 153:134115. [PMID: 33032418 DOI: 10.1063/5.0016244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We analyze the probability distribution of rare first passage times corresponding to transitions between product and reactant states in a kinetic transition network. The mean first passage times and the corresponding rate constants are analyzed in detail for two model landscapes and the double funnel landscape corresponding to an atomic cluster. Evaluation schemes based on eigendecomposition and kinetic path sampling, which both allow access to the first passage time distribution, are benchmarked against mean first passage times calculated using graph transformation. Numerical precision issues severely limit the useful temperature range for eigendecomposition, but kinetic path sampling is capable of extending the first passage time analysis to lower temperatures, where the kinetics of interest constitute rare events. We then investigate the influence of free energy based state regrouping schemes for the underlying network. Alternative formulations of the effective transition rates for a given regrouping are compared in detail to determine their numerical stability and capability to reproduce the true kinetics, including recent coarse-graining approaches that preserve occupancy cross correlation functions. We find that appropriate regrouping of states under the simplest local equilibrium approximation can provide reduced transition networks with useful accuracy at somewhat lower temperatures. Finally, a method is provided to systematically interpolate between the local equilibrium approximation and exact intergroup dynamics. Spectral analysis is applied to each grouping of states, employing a moment-based mode selection criterion to produce a reduced state space, which does not require any spectral gap to exist, but reduces to gap-based coarse graining as a special case. Implementations of the developed methods are freely available online.
Collapse
Affiliation(s)
- Thomas D Swinburne
- Aix-Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy, 13288 Marseille, France
| | - Deepti Kannan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
15
|
Yoshida Y, Yokoi H, Sato H. Energy landscape study of water splitting and H
2
evolution at a ruthenium(
II
) pincer complex. J Comput Chem 2020; 41:2240-2250. [DOI: 10.1002/jcc.26385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Yuichiro Yoshida
- Department of Molecular Engineering, Graduate School of EngineeringKyoto University Kyoto Japan
| | - Hayato Yokoi
- Department of Molecular Engineering, Graduate School of EngineeringKyoto University Kyoto Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of EngineeringKyoto University Kyoto Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto University Kyoto Japan
- Fukui Institute for Fundamental ChemistryKyoto University Kyoto Japan
| |
Collapse
|
16
|
Loper J, Zhou G, Geman S. Capacities and efficient computation of first-passage probabilities. Phys Rev E 2020; 102:023304. [PMID: 32942394 DOI: 10.1103/physreve.102.023304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
A reversible diffusion process is initialized at position x_{0} and run until it first hits any of several targets. What is the probability that it terminates at a particular target? We propose a computationally efficient approach for estimating this probability, focused on those situations in which it takes a long time to hit any target. In these cases, direct simulation of the hitting probabilities becomes prohibitively expensive. On the other hand, if the timescales are sufficiently long, then the system will essentially "forget" its initial condition before it encounters a target. In these cases the hitting probabilities can be accurately approximated using only local simulations around each target, obviating the need for direct simulations. In empirical tests, we find that these local estimates can be computed in the same time it would take to compute a single direct simulation, but that they achieve an accuracy that would require thousands of direct simulation runs.
Collapse
Affiliation(s)
- Jackson Loper
- Data Science Institute, Columbia University, 10027 New York, New York, USA
| | - Guangyao Zhou
- Division of Applied Mathematics, Brown University, Providence, 02912 Rhode Island, USA
| | - Stuart Geman
- Division of Applied Mathematics, Brown University, Providence, 02912 Rhode Island, USA
| |
Collapse
|
17
|
Röder K, Wales DJ. Improving double-ended transition state searches for soft-matter systems. J Chem Phys 2020; 153:034104. [PMID: 32716181 DOI: 10.1063/5.0011829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transitions between different stable configurations of biomolecules are important in understanding disease mechanisms, structure-function relations, and novel molecular-scale engineering. The corresponding pathways can be characterized efficiently using geometry optimization schemes based on double-ended transition state searches. An interpolation is first constructed between the known states and then refined, yielding a band that contains transition state candidates. Here, we analyze an example where various interpolation schemes lead to bands with a single step transition, but the correct pathway actually proceeds via an intervening, low-energy minimum. We compare a number of different interpolation schemes for this problem. We systematically alter the number of discrete images in the interpolations and the spring constants used in the optimization and test two schemes for adjusting the spring constants and image distribution, resulting in a total of 2760 different connection attempts. Our results confirm that optimized bands are not necessarily a good description of the transition pathways in themselves, and further refinement to actually converge transition states and establish their connectivity is required. We see an improvement in the optimized bands if we employ the adjustment of spring constants with doubly-nudged elastic band and a smaller improvement from the image redistribution. The example we consider is representative of numerous cases we have encountered in a wide variety of molecular and condensed matter systems.
Collapse
Affiliation(s)
- K Röder
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - D J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| |
Collapse
|
18
|
Sharpe DJ, Wales DJ. Efficient and exact sampling of transition path ensembles on Markovian networks. J Chem Phys 2020; 153:024121. [DOI: 10.1063/5.0012128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Daniel J. Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
19
|
Mitsuta Y, Shigeta Y. Analytical Method Using a Scaled Hypersphere Search for High-Dimensional Metadynamics Simulations. J Chem Theory Comput 2020; 16:3869-3878. [PMID: 32384233 DOI: 10.1021/acs.jctc.0c00010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metadynamics (MTD) is one of the most effective methods for calculating the free energy surface and finding rare events. Nevertheless, numerous studies using MTD have been carried out using 3D or lower dimensional collective variables (CVs), as higher dimensional CVs require costly computational resources and the obtained results are too complex to understand the important events. The latter issue can be conveniently solved by utilizing the free energy reaction network (FERN), which is a graph structure consisting of edges of minimum free energy paths (MFEPs), nodes of equation (EQ) points, and transition state (TS) points. In the present article, a new method for exploring FERNs on high-dimensional CVs using MTD and the scaled hypersphere search (SHS) method is described. A test calculation based on the MTD-SHS simulation of met-enkephalin in explicit water with 7 CVs was conducted. As a result, 889 EQ points and 1805 TS points were found. The MTD-SHS approach can find MFEPs exhaustively; therefore, the FERNs can be estimated without any a priori knowledge of the EQ and TS points.
Collapse
Affiliation(s)
- Yuki Mitsuta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
20
|
Swinburne TD, Wales DJ. Defining, Calculating, and Converging Observables of a Kinetic Transition Network. J Chem Theory Comput 2020; 16:2661-2679. [PMID: 32155072 DOI: 10.1021/acs.jctc.9b01211] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Kinetic transition networks (KTNs) of local minima and transition states are able to capture the dynamics of numerous systems in chemistry, biology, and materials science. However, extracting observables is numerically challenging for large networks and generally will be sensitive to additional computational discovery. To have any measure of convergence for observables, these sensitivities must be regularly calculated. We present a matrix formulation of the discrete path sampling framework for KTNs, deriving expressions for branching probabilities, transition rates, and waiting times. Using the concept of the quasi-stationary distribution, a clear hierarchy of expressions for network observables is established, from exact results to steady-state approximations. We use these results in combination with the graph transformation method to derive the sensitivity, with respect to perturbations of the known KTN, giving explicit terms for the pairwise sensitivity and discussing the pathwise sensitivity. These results provide guidelines for converging the network, with respect to additional sampling, focusing on the estimates obtained for the overall rate coefficients between product and reactant states. We demonstrate this procedure for transitions in the double-funnel landscape of the 38-atom Lennard-Jones cluster.
Collapse
Affiliation(s)
- Thomas D Swinburne
- Aix-Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy, 13288 Marseille, France
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
21
|
Abstract
We report an embarrassingly parallel method for the evaluation of thermodynamic properties over an energy landscape exhibiting broken ergodicity, nested is the likelihood of the observed data D givenbasin-sampling (NBS). We also introduce the No Galilean U-Turn Sampler (NoGUTS), a new sampling scheme based on the No U-Turn Sampler (NUTS) introduced by Hoffman and Gelman (2014) that works with the Galilean Monte Carlo scheme introduced by Betancourt (2012) to aid the efficient generation of new live points. NoGUTS can be thought of as a form of reflective slice sampling with an automatic stopping criterion. We apply this approach to a benchmark atomic cluster of 31 Lennard-Jones atoms, which exhibits a low temperature solid-solid heat capacity peak. The calculated heat capacity is compared with results generated by parallel tempering (PT), basin-sampling parallel tempering (BSPT), and standard nested sampling (NS) simulations. NBS reproduces the full heat capacity curve predicted by PT and BSPT, while the NS calculation with similar computational cost fails to resolve the low-temperature solid-solid phase transition.
Collapse
Affiliation(s)
- Matthew Griffiths
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - David J Wales
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
22
|
Baletto F. Structural properties of sub-nanometer metallic clusters. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:113001. [PMID: 30562724 DOI: 10.1088/1361-648x/aaf989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
At the nanoscale, the investigation of structural features becomes fundamental as we can establish relationships between cluster geometries and their physicochemical properties. The peculiarity lies in the variety of shapes often unusual and far from any geometrical and crystallographic intuition clusters can assume. In this respect, we should treat and consider nanoparticles as a new form of matter. Nanoparticle structures depend on their size, chemical composition, ordering, as well as external conditions e.g. synthesis method, pressure, temperature, support. On top of that, at finite temperatures nanoparticles can fluctuate among different structures, opening new and exciting horizons for the design of optimal nanoparticles for advanced applications. This article aims to overview geometrical features of transition metal clusters and of their various rearrangements.
Collapse
Affiliation(s)
- Francesca Baletto
- Physics Department, King's College London, WC2R 2LS, London, United Kingdom
| |
Collapse
|
23
|
An Q, Shen Y, Fortunelli A, Goddard WA. QM-Mechanism-Based Hierarchical High-Throughput in Silico Screening Catalyst Design for Ammonia Synthesis. J Am Chem Soc 2018; 140:17702-17710. [PMID: 30479122 DOI: 10.1021/jacs.8b10499] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose and test a hierarchical high-throughput screening (HHTS) approach to catalyst design for complex catalytic reaction systems that is based on quantum mechanics (QM) derived full reaction networks with QM rate constants but simplified to examine only the reaction steps likely to be rate determining. We illustrate this approach by applying it to determine the optimum dopants (our of 35 candidates) to improve the turnover frequency (TOF) for the Fe-based Haber-Bosch ammonia synthesis process. We start from the QM-based free-energy reaction network for this reaction over Fe(111), which contains the 26 most important surface configurations and 17 transition states at operating conditions of temperature and pressure, from which we select the key reaction steps that might become rate determining for the alloy. These are arranged hierarchically by decreasing free-energy reaction barriers. We then extract from the full reaction network, a reduced set of reaction rates required to quickly predict the effect of the catalyst changes on each barrier. This allows us to test new candidates with only 1% of the effort for a full calculation. Thus, we were able to quickly screen 34 candidate dopants to select a small subset (Rh, Pt, Pd, Cu) that satisfy all criteria, including stability. Then from these four candidates expected to increase the TOF for NH3 production, we selected the best candidate (Rh) for a more complete free-energy and kinetic analysis (10 times the effort for HHTS but still 10% of the effort for a complete analysis of the full reaction network). We predict that Rh doping of Fe will increase the TOF for NH3 synthesis by a factor of ∼3.3 times compared to Fe(111), in excellent agreement with our HHTS predictions, validating this approach.
Collapse
Affiliation(s)
- Qi An
- Materials and Process Simulation Center (MSC) , California Institute of Technology , Pasadena , California 91125 , United States.,Department of Chemical and Materials Engineering , University of Nevada-Reno , Reno , Nevada 89577 , United States
| | - Yidi Shen
- Department of Chemical and Materials Engineering , University of Nevada-Reno , Reno , Nevada 89577 , United States
| | - Alessandro Fortunelli
- Materials and Process Simulation Center (MSC) , California Institute of Technology , Pasadena , California 91125 , United States.,CNR-ICCOM, ThC2-Lab , Consiglio Nazionale delle Ricerche , Pisa 56124 , Italy
| | - William A Goddard
- Materials and Process Simulation Center (MSC) , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
24
|
Škrbić T, Hoang TX, Maritan A, Banavar JR, Giacometti A. The elixir phase of chain molecules. Proteins 2018; 87:176-184. [PMID: 30371948 DOI: 10.1002/prot.25619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/26/2018] [Accepted: 10/16/2018] [Indexed: 11/08/2022]
Abstract
A phase of matter is a familiar notion for inanimate physical matter. The nature of a phase of matter transcends the microscopic material properties. For example, materials in the liquid phase have certain common properties independent of the chemistry of the constituents: liquids take the shape of the container; they flow; and they can be poured-alcohol, oil, and water as well as a Lennard-Jones computer model exhibit similar behavior when poised in the liquid phase. Here, we identify a hitherto unstudied "phase" of matter, the elixir phase, in a simple model of a polymeric chain whose backbone has the correct local cylindrical symmetry induced by the tangent to the chain. The elixir phase appears on breaking the cylindrical symmetry by adding side spheres along the negative normal direction, as in proteins. This phase, nestled between other phases, has multiple ground states made up of building blocks of helices and almost planar sheets akin to protein native folds. We discuss the similarities of this "phase" of a finite size system to the liquid crystal and spin glass phases. Our findings are relevant for understanding proteins; the creation of novel bioinspired nanomachines; and also may have implications for life elsewhere in the cosmos.
Collapse
Affiliation(s)
- Tatjana Škrbić
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia Campus Scientifico, Edificio Alfa, Venezia Mestre, Italy.,Department of Physics and Institute for Theoretical Science, University of Oregon, Eugene, Oregon
| | - Trinh X Hoang
- Center for Computational Physics, Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Amos Maritan
- Dipartimento di Fisica e Astronomia, Università di Padova, and INFN, Padova, Italy
| | - Jayanth R Banavar
- Department of Physics and Institute for Theoretical Science, University of Oregon, Eugene, Oregon
| | - Achille Giacometti
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia Campus Scientifico, Edificio Alfa, Venezia Mestre, Italy
| |
Collapse
|
25
|
Cai Y, Cheng L. Single-root networks for describing the potential energy surface of Lennard-Jones clusters. J Chem Phys 2018; 149:084102. [PMID: 30193512 DOI: 10.1063/1.5043330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Potential energy surface (PES) holds the key in understanding a number of atomic clusters or molecular phenomena. However, due to the high dimension and incredible complexity of PES, only indirect methods can be used to characterize a PES of a given system in general. In this paper, a branched dynamic lattice searching method was developed to travel the PES, which was described in detail by a single-root network (SRN). The advantage of SRN is that it reflects the topological relation between different conformations and highlights the size of each structure energy trap. On the basis of SRN, to demonstrate how to transform one conformation to another, the transition path that connects two local minima in the PES was constructed. Herein, we take Lennard-Jones (LJ) clusters at the sizes of 38, 55, and 75 as examples. It is found that the PES of these three clusters have many local funnels and each local funnel represents one morphology. If a morphology is located more frequently, it will lie in a larger local funnel. Besides, certain steps of the transition path were generated successfully, such as changing from icosahedral to truncated octahedral of the LJ38-cluster. Though we do not exhibit all the parts of the PES or all transition paths, this method indeed works well in the local area and can be used more widely.
Collapse
Affiliation(s)
- Yinjiang Cai
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Longjiu Cheng
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
26
|
Bhoutekar A, Ghosh S, Bhattacharya S, Chatterjee A. A new class of enhanced kinetic sampling methods for building Markov state models. J Chem Phys 2018; 147:152702. [PMID: 29055344 DOI: 10.1063/1.4984932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Markov state models (MSMs) and other related kinetic network models are frequently used to study the long-timescale dynamical behavior of biomolecular and materials systems. MSMs are often constructed bottom-up using brute-force molecular dynamics (MD) simulations when the model contains a large number of states and kinetic pathways that are not known a priori. However, the resulting network generally encompasses only parts of the configurational space, and regardless of any additional MD performed, several states and pathways will still remain missing. This implies that the duration for which the MSM can faithfully capture the true dynamics, which we term as the validity time for the MSM, is always finite and unfortunately much shorter than the MD time invested to construct the model. A general framework that relates the kinetic uncertainty in the model to the validity time, missing states and pathways, network topology, and statistical sampling is presented. Performing additional calculations for frequently-sampled states/pathways may not alter the MSM validity time. A new class of enhanced kinetic sampling techniques is introduced that aims at targeting rare states/pathways that contribute most to the uncertainty so that the validity time is boosted in an effective manner. Examples including straightforward 1D energy landscapes, lattice models, and biomolecular systems are provided to illustrate the application of the method. Developments presented here will be of interest to the kinetic Monte Carlo community as well.
Collapse
Affiliation(s)
- Arti Bhoutekar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Susmita Ghosh
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Swati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Abhijit Chatterjee
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
27
|
Mella M, La Rocca MV, Miele Y, Izzo L. On the origin and consequences of high DMAEMA reactivity ratio in ATRP copolymerization with MMA: An experimental and theoretical study#. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia; Università degli Studi dell'Insubria, via Valleggio 9; Como 22100 Italy
| | - Mario Vincenzo La Rocca
- Dipartimento di Scienza ed Alta Tecnologia; Università degli Studi dell'Insubria, via Valleggio 9; Como 22100 Italy
| | - Ylenia Miele
- Dipartimento di Chimica e Biologia; Università degli Studi di Salerno, Via Giovanni Paolo II, 132; 84084 Fisciano Italy
| | - Lorella Izzo
- Dipartimento di Chimica e Biologia; Università degli Studi di Salerno, Via Giovanni Paolo II, 132; 84084 Fisciano Italy
| |
Collapse
|
28
|
MacKay RS, Robinson JD. Aggregation of Markov flows I: theory. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0232. [PMID: 29555805 PMCID: PMC5869541 DOI: 10.1098/rsta.2017.0232] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 05/29/2023]
Abstract
A Markov flow is a stationary measure, with the associated flows and mean first passage times, for a continuous-time regular jump homogeneous semi-Markov process on a discrete state space. Nodes in the state space can be eliminated to produce a smaller Markov flow which is a factor of the original one. Some improvements to the elimination methods of Wales are given. The main contribution of the paper is to present an alternative, namely a method to aggregate groups of nodes to produce a factor. The method can be iterated to make hierarchical aggregation schemes. The potential benefits are efficient computation, including recomputation to take into account local changes, and insights into the macroscopic behaviour.This article is part of the theme issue 'Hilbert's sixth problem'.
Collapse
Affiliation(s)
- R S MacKay
- Mathematics Institute and Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, UK
| | - J D Robinson
- Mathematics Institute and Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
29
|
Zhai H, Alexandrova AN. Local Fluxionality of Surface-Deposited Cluster Catalysts: The Case of Pt 7 on Al 2O 3. J Phys Chem Lett 2018; 9:1696-1702. [PMID: 29551071 DOI: 10.1021/acs.jpclett.8b00379] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Subnano surface-supported catalytic clusters can be generally characterized by many low-energy isomers accessible at elevated temperatures of catalysis. The most stable isomer may not be the most catalytically active. Additionally, isomers may interconvert across barriers, i.e., exhibit fluxionality, during catalysis. To study the big picture of the cluster fluxional behavior, we model such a process as isomerization graph using bipartite matching algorithm, harmonic transition state theory, and paralleled nudged elastic band method. All the minimal energy paths form a minimum spanning tree (MST) of the original graph. Detailed inspection shows that, at temperatures typical for catalysis, the cluster geometry changes frequently within several regions in the MST, while transition across regions is less likely. As a further confirmation, the structural similarity analysis was additionally performed based on molecular dynamics trajectories. This local fluxionality picture provides a new perspective on understanding finite-temperate catalytic processes.
Collapse
Affiliation(s)
- Huanchen Zhai
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
- California NanoSystems Institute , Los Angeles , California 90095 , United States
| |
Collapse
|
30
|
Kolsbjerg EL, Goubert G, McBreen PH, Hammer B. Rotation and diffusion of naphthalene on Pt(111). J Chem Phys 2018; 148:124703. [PMID: 29604848 DOI: 10.1063/1.5017581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The behavior of naphthalene on Pt(111) surfaces is studied by combining insight from scanning tunneling microscopy (STM) and van der Waals enabled density functional theory. Adsorption, diffusion, and rotation are investigated by a series of variable temperature STM experiments revealing naphthalene ability to rotate on-site with ease with a rotational barrier of 0.69 eV. Diffusion to neighbouring sites is found to be more difficult. The experimental results are in good agreement with the theoretical investigations which confirm that the barrier for diffusion is slightly higher than the one for rotation. The theoretical barriers for rotation and translation are found to be 0.75 and 0.78 eV, respectively. An automatic mapping of the possible diffusion pathways reveals very detailed diffusion paths with many small local minima that would have been practically impossible to find manually. This automated procedure provides detailed insight into the preferred diffusion pathways that are important for our understanding of molecule-substrate interactions.
Collapse
Affiliation(s)
- E L Kolsbjerg
- Interdisciplinary Nanoscience Center (iNANO), Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - G Goubert
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - P H McBreen
- Department of Chemistry, Laval University, Quebec, Quebec G1V 0A6, Canada
| | - B Hammer
- Interdisciplinary Nanoscience Center (iNANO), Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
31
|
Zhang XJ, Shang C, Liu ZP. Stochastic surface walking reaction sampling for resolving heterogeneous catalytic reaction network: A revisit to the mechanism of water-gas shift reaction on Cu. J Chem Phys 2017; 147:152706. [DOI: 10.1063/1.4989540] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
32
|
Griffiths M, Niblett SP, Wales DJ. Optimal Alignment of Structures for Finite and Periodic Systems. J Chem Theory Comput 2017; 13:4914-4931. [PMID: 28841314 DOI: 10.1021/acs.jctc.7b00543] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Finding the optimal alignment between two structures is important for identifying the minimum root-mean-square distance (RMSD) between them and as a starting point for calculating pathways. Most current algorithms for aligning structures are stochastic, scale exponentially with the size of structure, and the performance can be unreliable. We present two complementary methods for aligning structures corresponding to isolated clusters of atoms and to condensed matter described by a periodic cubic supercell. The first method (Go-PERMDIST), a branch and bound algorithm, locates the global minimum RMSD deterministically in polynomial time. The run time increases for larger RMSDs. The second method (FASTOVERLAP) is a heuristic algorithm that aligns structures by finding the global maximum kernel correlation between them using fast Fourier transforms (FFTs) and fast SO(3) transforms (SOFTs). For periodic systems, FASTOVERLAP scales with the square of the number of identical atoms in the system, reliably finds the best alignment between structures that are not too distant, and shows significantly better performance than existing algorithms. The expected run time for Go-PERMDIST is longer than FASTOVERLAP for periodic systems. For finite clusters, the FASTOVERLAP algorithm is competitive with existing algorithms. The expected run time for Go-PERMDIST to find the global RMSD between two structures deterministically is generally longer than for existing stochastic algorithms. However, with an earlier exit condition, Go-PERMDIST exhibits similar or better performance.
Collapse
Affiliation(s)
- Matthew Griffiths
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Samuel P Niblett
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
33
|
Gould AL, Rossi K, Catlow CRA, Baletto F, Logsdail AJ. Controlling Structural Transitions in AuAg Nanoparticles through Precise Compositional Design. J Phys Chem Lett 2016; 7:4414-4419. [PMID: 27781433 DOI: 10.1021/acs.jpclett.6b02181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a study of the transitional pathways between high-symmetry structural motifs for AgAu nanoparticles, with a specific focus on controlling the energetic barriers through chemical design. We show that the barriers can be altered by careful control of the elemental composition and chemical arrangement, with core@shell and vertex-decorated arrangements being specifically influential on the barrier heights. We also highlight the complexity of the potential and free energy landscapes for systems where there are low-symmetry geometric motifs that are energetically competitive to the high-symmetry arrangements. In particular, we highlight that some core@shell arrangements preferentially transition through multistep restructuring of low-symmetry truncated octahedra and rosette-icosahedra, instead of via the more straightforward square-diamond transformations, due to lower energy barriers and competitive energetic minima. Our results have promising implications for the continuing efforts in bespoke nanoparticle design for catalytic and plasmonic applications.
Collapse
Affiliation(s)
- Anna L Gould
- University College London , Kathleen Lonsdale Materials Chemistry, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- The U.K. Catalysis Hub , Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire OX11 0FA, United Kingdom
| | - Kevin Rossi
- Physics Department, King's College London , London WC2R 2LS, United Kingdom
| | - C Richard A Catlow
- University College London , Kathleen Lonsdale Materials Chemistry, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- The U.K. Catalysis Hub , Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire OX11 0FA, United Kingdom
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University , Cardiff CF10 3AT, United Kingdom
| | - Francesca Baletto
- Physics Department, King's College London , London WC2R 2LS, United Kingdom
| | - Andrew J Logsdail
- University College London , Kathleen Lonsdale Materials Chemistry, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University , Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
34
|
Cameron M, Gan T. Spectral analysis and clustering of large stochastic networks. Application to the Lennard-Jones-75 cluster. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2016.1139109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Proton transfer pathways in an aspartate-water cluster sampled by a network of discrete states. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Abstract
Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes.
Collapse
Affiliation(s)
- P Imhof
- Institute of Theoretical Physics, Free University Berlin, Berlin, Germany.
| |
Collapse
|
37
|
Maeda S, Harabuchi Y, Takagi M, Taketsugu T, Morokuma K. Artificial Force Induced Reaction (AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces. CHEM REC 2016; 16:2232-2248. [DOI: 10.1002/tcr.201600043] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Satoshi Maeda
- Department of Chemistry, Faculty of Science; Hokkaido University; Sapporo 060-0810 Japan
| | - Yu Harabuchi
- Department of Chemistry, Faculty of Science; Hokkaido University; Sapporo 060-0810 Japan
| | - Makito Takagi
- Graduate School of Chemical Sciences and Engineering; Hokkaido University; Sapporo 060-8628 Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science; Hokkaido University; Sapporo 060-0810 Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University; Kyoto 606-8103 Japan
| |
Collapse
|
38
|
Fačkovec B, Vanden-Eijnden E, Wales DJ. Markov state modeling and dynamical coarse-graining via discrete relaxation path sampling. J Chem Phys 2016; 143:044119. [PMID: 26233119 DOI: 10.1063/1.4926940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A method is derived to coarse-grain the dynamics of complex molecular systems to a Markov jump process (MJP) describing how the system jumps between cells that fully partition its state space. The main inputs are relaxation times for each pair of cells, which are shown to be robust with respect to positioning of the cell boundaries. These relaxation times can be calculated via molecular dynamics simulations performed in each cell separately and are used in an efficient estimator for the rate matrix of the MJP. The method is illustrated through applications to Sinai billiards and a cluster of Lennard-Jones discs.
Collapse
Affiliation(s)
- B Fačkovec
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - E Vanden-Eijnden
- Courant Institute, New York University, 251 Mercer Street, New York, New York 10012, USA
| | - D J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| |
Collapse
|
39
|
Fačkovec B, Morgan JWR, Wales DJ. Dynamical properties of two- and three-dimensional colloidal clusters of six particles. Phys Chem Chem Phys 2016; 18:12725-32. [PMID: 27098768 DOI: 10.1039/c6cp00677a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Colloidal clusters are important systems for studying self-assembly. Clusters of six colloidal particles attracting each other via short-ranged interactions have been recently studied both theoretically and experimentally. Here we present a computer modelling study of the thermodynamics and dynamics of these clusters using a short-ranged Morse potential in two and three dimensions. We combine energy landscape methods with comprehensive sampling, both of configurations using Markov chain Monte Carlo and also of trajectories using Langevin molecular dynamics propagation. We show that the interaction energies between the particles are probably greater than previously assumed. The rates predicted by transition state theory using harmonic vibrational densities of states are off by four orders of magnitude, since the effects of viscosity are not accounted for. In contrast, sampling short trajectories using an appropriate friction constant and discrete relaxation path sampling produces reasonable agreement with the experimental rates.
Collapse
Affiliation(s)
- B Fačkovec
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | | | | |
Collapse
|
40
|
Neelamraju S, Johnston RL, Schön JC. A Threshold-Minimization Scheme for Exploring the Energy Landscape of Biomolecules: Application to a Cyclic Peptide and a Disaccharide. J Chem Theory Comput 2016; 12:2471-9. [PMID: 27049524 DOI: 10.1021/acs.jctc.6b00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a scheme, called the threshold-minimization method, for globally exploring the energy landscapes of small systems of biomolecular interest where typical exploration moves always require a certain degree of subsequent structural relaxation in order to be efficient, e.g., systems containing small or large circular carbon chains such as cyclic peptides or carbohydrates. We show that using this threshold-minimization method we can not only reproduce the global minimum and relevant local minima but also overcome energetic barriers associated with different types of isomerism for the example of a cyclic peptide, cyclo-(Gly)4. We then apply the new method to the disaccharide α-d-glucopyranose-1-2-β-d-fructofuranose, report energetically preferred configurations and barriers to boat-chair isomerization in the glucopyranosyl ring, and discuss the energy landscape.
Collapse
Affiliation(s)
- Sridhar Neelamraju
- School of Chemistry, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Roy L Johnston
- School of Chemistry, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
| | - J Christian Schön
- Max Planck Institute for Solid State Research , Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| |
Collapse
|
41
|
Carr JM, Mazauric D, Cazals F, Wales DJ. Energy landscapes and persistent minima. J Chem Phys 2016; 144:054109. [DOI: 10.1063/1.4941052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joanne M. Carr
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Dorian Mazauric
- Inria Sophia Antipolis Méditerranée, 2004 route des Lucioles, F-06902 Sophia Antipolis, France
| | - Frédéric Cazals
- Inria Sophia Antipolis Méditerranée, 2004 route des Lucioles, F-06902 Sophia Antipolis, France
| | - David J. Wales
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
42
|
|
43
|
Sumiya Y, Nagahata Y, Komatsuzaki T, Taketsugu T, Maeda S. Kinetic Analysis for the Multistep Profiles of Organic Reactions: Significance of the Conformational Entropy on the Rate Constants of the Claisen Rearrangement. J Phys Chem A 2015; 119:11641-9. [DOI: 10.1021/acs.jpca.5b09447] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yosuke Sumiya
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Yutaka Nagahata
- Graduate
School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Tamiki Komatsuzaki
- Graduate
School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- Molecule
and Life Nonlinear Sciences Laboratory, Research Institute for Electronic
Science, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo 001-0020, Japan
| | - Tetsuya Taketsugu
- Department
of Chemistry, Faculty of Science, Hokkaido University, Kita 10,
Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Satoshi Maeda
- Department
of Chemistry, Faculty of Science, Hokkaido University, Kita 10,
Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
44
|
Suleimanov YV, Green WH. Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods. J Chem Theory Comput 2015; 11:4248-59. [DOI: 10.1021/acs.jctc.5b00407] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yury V. Suleimanov
- Computation-based
Science and Technology Research Center, Cyprus Institute, 20
Kavafi Street, Nicosia 2121, Cyprus
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William H. Green
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
45
|
Cournia Z, Allen TW, Andricioaei I, Antonny B, Baum D, Brannigan G, Buchete NV, Deckman JT, Delemotte L, del Val C, Friedman R, Gkeka P, Hege HC, Hénin J, Kasimova MA, Kolocouris A, Klein ML, Khalid S, Lemieux MJ, Lindow N, Roy M, Selent J, Tarek M, Tofoleanu F, Vanni S, Urban S, Wales DJ, Smith JC, Bondar AN. Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory. J Membr Biol 2015; 248:611-40. [PMID: 26063070 PMCID: PMC4515176 DOI: 10.1007/s00232-015-9802-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/26/2015] [Indexed: 01/05/2023]
Abstract
Membrane proteins mediate processes that are fundamental for the flourishing of biological cells. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. We present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.
Collapse
Affiliation(s)
- Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece
| | - Toby W. Allen
- School of Applied Sciences & Health Innovations Research Institute, RMIT University, GPO Box 2476, Melbourne, Vic, 3001, Australia; and Department of Chemistry, University of California, Davis. Davis, CA 95616, USA
| | - Ioan Andricioaei
- Department of Chemistry, University of California, Irvine, CA 92697
| | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and Centre National de la Recherche Scientifique, UMR 7275, 06560 Valbonne, France
| | - Daniel Baum
- Department of Visualization and Data Analysis, Zuse Institute Berlin, Takustrasse 7, D-14195 Berlin, Germany
| | - Grace Brannigan
- Center for Computational and Integrative Biology and Department of Physics, Rutgers University-Camden, Camden, NJ, USA
| | - Nicolae-Viorel Buchete
- School of Physics and Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Lucie Delemotte
- Institute of Computational and Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Coral del Val
- Department of Artificial Intelligence, University of Granada, E-18071 Granada, Spain
| | - Ran Friedman
- Linnæus University, Department of Chemistry and Biomedical Sciences & Centre for Biomaterials Chemistry, 391 82 Kalmar, Sweden
| | - Paraskevi Gkeka
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece
| | - Hans-Christian Hege
- Department of Visualization and Data Analysis, Zuse Institute Berlin, Takustrasse 7, D-14195 Berlin, Germany
| | - Jérôme Hénin
- Laboratoire de Biochimie Théorique, IBPC and CNRS, Paris, France
| | - Marina A. Kasimova
- Université de Lorraine, SRSMC, UMR 7565, Vandoeuvre-lès-Nancy, F-54500, France
- Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Antonios Kolocouris
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Panepistimioupolis-Zografou, 15771 Athens, Greece
| | - Michael L. Klein
- Institute of Computational and Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Syma Khalid
- Department of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - M. Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine & Dentistry, Membrane Protein Disease Research Group, and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Norbert Lindow
- Department of Visualization and Data Analysis, Zuse Institute Berlin, Takustrasse 7, D-14195 Berlin, Germany
| | - Mahua Roy
- Department of Chemistry, University of California, Irvine
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Mounir Tarek
- Université de Lorraine, SRSMC, UMR 7565, Vandoeuvre-lès-Nancy, F-54500, France
- CNRS, SRSMC, UMR 7565, Vandoeuvre-lès-Nancy, F-54500, France
| | - Florentina Tofoleanu
- School of Physics and Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stefano Vanni
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and Centre National de la Recherche Scientifique, UMR 7275, 06560 Valbonne, France
| | - Sinisa Urban
- Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Department of Molecular Biology & Genetics, 725 N. Wolfe Street, 507 Preclinical Teaching Building, Baltimore, MD 21205, USA
| | - David J. Wales
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jeremy C. Smith
- Oak Ridge National Laboratory, PO BOX 2008 MS6309, Oak Ridge, TN 37831-6309, USA
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
46
|
Carr JM, Whittleston CS, Wade DC, Wales DJ. Energy landscapes of a hairpin peptide including NMR chemical shift restraints. Phys Chem Chem Phys 2015; 17:20250-8. [PMID: 26186565 DOI: 10.1039/c5cp01259g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methods recently introduced to improve the efficiency of protein structure prediction simulations by adding a restraint potential to a molecular mechanics force field introduce additional input parameters that can affect the performance. Here we investigate the changes in the energy landscape as the relative weight of the two contributions, force field and restraint potential, is systematically altered, for restraint functions constructed from calculated nuclear magnetic resonance chemical shifts. Benchmarking calculations were performed on a 12-residue peptide, tryptophan zipper 1, which features both secondary structure (a β-hairpin) and specific packing of tryptophan sidechains. Basin-hopping global optimization was performed to assess the efficiency with which lowest-energy structures are located, and the discrete path sampling approach was employed to survey the energy landscapes between unfolded and folded structures. We find that inclusion of the chemical shift restraints improves the efficiency of structure prediction because the energy landscape becomes more funnelled and the proportion of local minima classified as native increases. However, the funnelling nature of the landscape is reduced as the relative contribution of the chemical shift restraint potential is increased past an optimal value.
Collapse
Affiliation(s)
- Joanne M Carr
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | | | | | | |
Collapse
|
47
|
Chebaro Y, Ballard AJ, Chakraborty D, Wales DJ. Intrinsically disordered energy landscapes. Sci Rep 2015; 5:10386. [PMID: 25999294 PMCID: PMC4441119 DOI: 10.1038/srep10386] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/10/2015] [Indexed: 12/19/2022] Open
Abstract
Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such 'intrinsically disordered' landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an α-helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium.
Collapse
Affiliation(s)
- Yassmine Chebaro
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| | - Andrew J Ballard
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| | - Debayan Chakraborty
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| |
Collapse
|
48
|
Mehta D, Chen T, Morgan JWR, Wales DJ. Exploring the potential energy landscape of the Thomson problem via Newton homotopies. J Chem Phys 2015; 142:194113. [PMID: 26001453 DOI: 10.1063/1.4921163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Locating the stationary points of a real-valued multivariate potential energy function is an important problem in many areas of science. This task generally amounts to solving simultaneous nonlinear systems of equations. While there are several numerical methods that can find many or all stationary points, they each exhibit characteristic problems. Moreover, traditional methods tend to perform poorly near degenerate stationary points with additional zero Hessian eigenvalues. We propose an efficient and robust implementation of the Newton homotopy method, which is capable of quickly sampling a large number of stationary points of a wide range of indices, as well as degenerate stationary points. We demonstrate our approach by applying it to the Thomson problem. We also briefly discuss a possible connection between the present work and Smale's 7th problem.
Collapse
Affiliation(s)
- Dhagash Mehta
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Tianran Chen
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48823, USA
| | - John W R Morgan
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
49
|
Shang C, Whittleston CS, Sutherland-Cash KH, Wales DJ. Analysis of the Contrasting Pathogenicities Induced by the D222G Mutation in 1918 and 2009 Pandemic Influenza A Viruses. J Chem Theory Comput 2015; 11:2307-14. [PMID: 26321885 PMCID: PMC4547735 DOI: 10.1021/ct5010565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Indexed: 11/28/2022]
Abstract
In 2009, the D222G mutation in the hemagglutinin (HA) glycoprotein of pandemic H1N1 influenza A virus was found to correlate with fatal and severe human infections. Previous static structural analysis suggested that, unlike the H1N1 viruses prevalent in 1918, the mutation did not compromise binding to human α2,6-linked glycan receptors, allowing it to transmit efficiently. Here we investigate the interconversion mechanism between two predicted binding modes in both 2009 and 1918 HAs, introducing a highly parallel intermediate network search scheme to construct kinetically relevant pathways efficiently. Accumulated mutations at positions 183 and 224 that alter the size of the binding pocket are identified with the fitness of the 2009 pandemic virus carrying the D222G mutation. This result suggests that the pandemic H1N1 viruses could gain binding affinity to the α2,3-linked glycan receptors in the lungs, usually associated with highly pathogenic avian influenza, without compromising viability.
Collapse
Affiliation(s)
- Cheng Shang
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, U.K.
| | | | | | - David J. Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
50
|
Razavi AM, Voelz VA. Kinetic Network Models of Tryptophan Mutations in β-Hairpins Reveal the Importance of Non-Native Interactions. J Chem Theory Comput 2015; 11:2801-12. [DOI: 10.1021/acs.jctc.5b00088] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Asghar M. Razavi
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Vincent A. Voelz
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|