1
|
Meyer P, Jäger S, Khatri J, Henkel S, Schwaab G, Havenith M. Mixed H 2S and H 2O Clusters─New Insights into Dispersion-Dominated Hydrogen Bonding. J Phys Chem A 2024; 128:9627-9633. [PMID: 39446033 DOI: 10.1021/acs.jpca.4c05510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Here, we report the results of an IR spectroscopy study on heteroclusters of H2S and H2O and several of their isotopomers using mass-selective IR spectroscopy in superfluid helium nanodroplets in the range of 2560-2800 cm-1. Based on DFT calculations on the B3LYP-D3/6-311++G(d,p) level of theory, we were able to assign the experimentally observed O-D stretching bands to heterodimer and heterotrimer clusters. Since no bands of the S-H-bound conformer HSH···OH2 could be observed, we were able to determine the O-H-bound conformer HOH···SH2 to be the global minimum structure. A trapping of the local minima in helium nanodroplets was not observed. This is in line with the weaker hydrogen bond expected for H2S complexes. In these clusters, the interaction energy is expected to be more dominated by dispersion and less dictated by highly directional electrostatic forces.
Collapse
Affiliation(s)
- Philipp Meyer
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany
| | - Svenja Jäger
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jai Khatri
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany
| | - Stefan Henkel
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany
| | - Gerhard Schwaab
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany
| | - Martina Havenith
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
2
|
Fang YG, Zhu C, Shen L, Wang H, Fang WH. Synergistic Effects of Unconventional Hydrogen Bonds and π-Stacking Interaction and Their Excited-State Dependence: The Origin of Unusual Photophysical Properties of Aromatic Thioketones in Acetonitrile and Hydrocarbons. J Am Chem Soc 2024; 146:28845-28855. [PMID: 39390821 DOI: 10.1021/jacs.4c08578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
It has been established experimentally that aromatic thioketones possess several inherently unique photophysical properties, some of which are highly sensitive even to common hydrocarbon solvents. However, the deeper reasons and the underlying mechanisms remain unclear up to date. In this study, the multistate complete active space second-order perturbation theory (MS-CASPT2) has been utilized to investigate the five lowest-lying electronic states (S0, T1, S1, T2, and S2) of 4H-1-benzopyran-4-thione (BPT) in acetonitrile and hydrocarbons. The results show that the S1, T1, and T2 states of BPT are close in energy so that the T2-state-mediated S1 → T2 → T1 and T1 → T2 → S1 transitions could occur in tens of picoseconds, which exhibits little dependence on the formation of the BPT-solvent complexes and on the bulk-solvent effect. This explains why thermally activated delayed fluorescence from the S1 state has been observed for many aromatic thioketones in both inert media and hydrocarbons. Meanwhile, our calculations show that the intracomplex noncovalent interactions could be automatically adjusted by the redistribution of π-electrons in the flexible aromatic rings. This allows the S2 → S1 internal conversion to occur efficiently in the vicinity of the two-state conical intersection, which results in the remarkable changes in the S2-state lifetimes and fluorescence quantum yields of many aromatic thioketones from inert media to hydrocarbon solvents. The aforementioned inherent photophysical properties could be qualitatively understood by a simple model of frontier molecular orbitals. This model could be used to understand photophysical properties of other aromatic compounds (such as aldehydes, ketones, amines, and carboxylic acids) in different solvents.
Collapse
Affiliation(s)
- Ye-Guang Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Chongqin Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Lin Shen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80204, United States
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
3
|
Metya S, Roy S, Mandal S, Huang QR, Kuo JL, Das A. Modulation of the strength of weak S-H⋯O hydrogen-bond: Spectroscopic study of the complexes of 2-flurothiophenol with methanol and ethanol. J Chem Phys 2024; 160:224302. [PMID: 38856058 DOI: 10.1063/5.0208086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
Spectroscopic exploration of sulfur-centered hydrogen bonding involving a thiol group (S-H) as the hydrogen bond donor is scarce in the literature. Herein, we have investigated 1:1 complexes of 2-fluorothiophenol (2-FTP) with methanol (MeOH) and ethanol (EtOH) in the gas phase to examine the physical characteristics and strength of the S-H⋯O hydrogen bond. Structures, conformations, and the strength of the S-H⋯O interaction are investigated by measuring the electronic and Infrared (IR) spectra of the two complexes employing resonant two-photon ionization, UV-UV hole-burning, and IR-UV double resonance spectroscopic techniques combined with quantum chemical calculations. Three conformers of 2-FTP⋯MeOH and two conformers of 2-FTP⋯EtOH have been detected in the experiment. A comparison of the IR spectra obtained from the experiment with those of the low-energy conformers of 2-FTP⋯MeOH and 2-FTP⋯EtOH predicted from the theory confirms that all the observed conformers of the two complexes are primarily S-H⋯O hydrogen bonded. The IR red-shifts found in the S-H stretching frequencies in 2-FTP⋯MeOH and 2-FTP⋯EtOH concerning that in 2-FTP are ∼76 and ∼88 cm-1, respectively, which are much larger than that was reported earlier in the 2-FTP⋯H2O complex (30 cm-1). The strength and physical nature of different noncovalent interactions, including the S-H⋯O hydrogen bond existing in the complexes, are further analyzed using natural bond orbital analysis, quantum theory of atoms in molecules, and localized molecular orbital-energy decomposition analysis. The current investigation reveals that the S-H⋯O hydrogen bond can be strengthened by judicial choices of the hydrogen bond acceptors of higher proton affinities.
Collapse
Affiliation(s)
- Surajit Metya
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Supravat Roy
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sourav Mandal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Qian-Rui Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
4
|
Torres-Hernández F, Pinillos P, Li W, Saragi RT, Camiruaga A, Juanes M, Usabiaga I, Lesarri A, Fernández JA. Competition between O-H and S-H Intermolecular Interactions in Conformationally Complex Systems: The 2-Phenylethanethiol and 2-Phenylethanol Dimers. J Phys Chem Lett 2024; 15:5674-5680. [PMID: 38767855 PMCID: PMC11145646 DOI: 10.1021/acs.jpclett.4c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Noncovalent interactions involving sulfur centers play a relevant role in biological and chemical environments. Yet, detailed molecular descriptions are scarce and limited to very simple model systems. Here we explore the formation of the elusive S-H···S hydrogen bond and the competition between S-H···O and O-H···S interactions in pure and mixed dimers of the conformationally flexible molecules 2-phenylethanethiol (PET) and 2-phenylethanol (PEAL), using the isolated and size-controlled environment of a jet expansion. The structure of both PET-PET and PET-PEAL dimers was unraveled through a comprehensive methodology that combined rotationally resolved microwave spectroscopy, mass-resolved isomer-specific infrared laser spectroscopy, and quantum chemical calculations. This synergic experimental-computational approach offered unique insights into the potential energy surface, conformational equilibria, molecular structure, and intermolecular interactions of the dimers. The results show a preferential order for establishing hydrogen bonds following the sequence S-H···S < S-H···O ≲ O-H···S < O-H···O, despite the hydrogen bond only accounting for a fraction of the total interaction energy.
Collapse
Affiliation(s)
- Fernando Torres-Hernández
- Departamento
de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Paul Pinillos
- Departamento
de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Wenqin Li
- Departamento
de Química Física y Química Inorgánica,
Facultad de Ciencias - I.U. CINQUIMA, Universidad
de Valladolid, Paseo de Belén, 7, E-47011 Valladolid, Spain
| | - Rizalina Tama Saragi
- Departamento
de Química Física y Química Inorgánica,
Facultad de Ciencias - I.U. CINQUIMA, Universidad
de Valladolid, Paseo de Belén, 7, E-47011 Valladolid, Spain
| | - Ander Camiruaga
- Departamento
de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Marcos Juanes
- Departamento
de Química Física y Química Inorgánica,
Facultad de Ciencias - I.U. CINQUIMA, Universidad
de Valladolid, Paseo de Belén, 7, E-47011 Valladolid, Spain
| | - Imanol Usabiaga
- Departamento
de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Alberto Lesarri
- Departamento
de Química Física y Química Inorgánica,
Facultad de Ciencias - I.U. CINQUIMA, Universidad
de Valladolid, Paseo de Belén, 7, E-47011 Valladolid, Spain
| | - José A. Fernández
- Departamento
de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain
| |
Collapse
|
5
|
Lv W, Xu Y, Yang T, Wang L, Huang J, Huang H, Feng G. Unveiling the underappreciated: The bonding features of C-H⋯S-S interactions observed from rotational spectroscopy. J Chem Phys 2024; 160:134302. [PMID: 38557843 DOI: 10.1063/5.0200788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
The C-H⋯S-S interactions are fundamentally important to understand the stability of biomacromolecules and their binding with small molecules, but they are still underappreciated. Herein, we characterized the C-H⋯S-S interactions in model molecular complexes. The rotational spectra of the complexes of diethyl disulfide with CH2CH2 and CH2CHF were measured and analyzed. All the detected structures are mainly stabilized by a C-H⋯S-S hydrogen bond, providing stabilization energies of 2.3-7.2 kJ mol-1. Incidental C-H⋯π or C-H⋯F interactions enhance the stabilization of the complexes. London dispersion, which accounts for 54%-68% of the total attractions, is the main driving force of stabilization. The provided bonding features of C-H⋯S-S are crucial for understanding the stabilizing role of this type of interaction in diverse processes such as supramolecular recognition, protein stability, and enzyme activity.
Collapse
Affiliation(s)
- Wenqi Lv
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yugao Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Tingting Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Liuting Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Jinxi Huang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Haiying Huang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
6
|
Tama Saragi R, Li W, Juanes M, Enríquez L, Pinacho R, Rubio JE, Lesarri A. Rotational Spectroscopy and Conformational Flexibility of 2-Phenylethanethiol: The Dominant S-H⋅⋅⋅π Intramolecular Hydrogen Bond. Chemphyschem 2024; 25:e202300799. [PMID: 38282167 DOI: 10.1002/cphc.202300799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
We present a rotational-computational investigation of the aromatic mercaptan 2-phenylethanethiol, addressing its potential energy surface, conformational equilibrium, internal dynamics and intramolecular interactions. The experiment used broadband chirped-pulse Fourier transform microwave spectroscopy in a supersonic jet expansion, recording the rotational spectrum in the 2-8 GHz frequency region. Two different conformers were detected in the spectrum. The most intense transitions correspond to a skew (gauche-gauche) conformation, identified as the global minimum. The spectra of ten different isotopologues were assigned for this species, leading to accurate effective and substitution structures. The weaker spectrum presents small tunnelling doublings caused by the torsional motion of the thiol group, which are only compatible with an antiperiplanar skeleton and a gauche thiol. The larger stability of the global minimum is attributed to an intramolecular S-H⋅⋅⋅π weak hydrogen bond. A comparison of the intramolecular interactions in the title molecule and 2-phenylethanol, similarly stabilized by a O-H⋅⋅⋅π hydrogen bond, shows the different strength of these interactions. Density functional (B3LYP-D3, B2PLYP-D3) and ab initio (MP2) calculations were conducted for the molecule.
Collapse
Affiliation(s)
- Rizalina Tama Saragi
- Departamento de Química Física y Química Inorgánica -, I.U. CINQUIMA, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain
- Present address: Institut für Ionenphysik und Angewandte Chemie, Universität Innsbruck, Technikerstr. 25/4. OG, 6020, Innsbruck, Austria
| | - Wenqin Li
- Departamento de Química Física y Química Inorgánica -, I.U. CINQUIMA, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain
| | - Marcos Juanes
- Departamento de Química Física y Química Inorgánica -, I.U. CINQUIMA, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain
| | - Lourdes Enríquez
- Departamento de Electrónica, ETSIT, Universidad de Valladolid, Paseo de Belén 11, 47011, Valladolid, Spain
| | - Ruth Pinacho
- Departamento de Electrónica, ETSIT, Universidad de Valladolid, Paseo de Belén 11, 47011, Valladolid, Spain
| | - José Emiliano Rubio
- Departamento de Electrónica, ETSIT, Universidad de Valladolid, Paseo de Belén 11, 47011, Valladolid, Spain
| | - Alberto Lesarri
- Departamento de Química Física y Química Inorgánica -, I.U. CINQUIMA, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain
| |
Collapse
|
7
|
Silva WGDP, Poonia T, van Wijngaarden J. Exploring the conformational landscape, hydrogen bonding, and internal dynamics in the diallyl ether and diallyl sulfide monohydrates. J Chem Phys 2024; 160:044302. [PMID: 38258923 DOI: 10.1063/5.0180901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
The conformational spaces of the diallyl ether (DAE) and diallyl sulfide (DAS) monohydrates were explored using rotational spectroscopy from 6 to 19 GHz. Calculations at the B3LYP-D3(BJ)/aug-cc-pVTZ level suggested significant differences in their conformational behavior, with DAE-w exhibiting 22 unique conformers and DAS-w featuring three stable structures within 6 kJ mol-1. However, only transitions from the lowest energy conformer of each were experimentally observed. Spectral analysis confirmed that binding with water does not alter the conformational preference for the lowest energy structure of the monomers, but it does influence the relative stabilities of all other conformers, particularly in the case of DAE. Non-covalent interaction and quantum theory of atoms in molecules analyses showed that the observed conformer for each complex is stabilized by two intermolecular hydrogen bonds (HBs), where water primarily interacts with the central oxygen or sulfur atom of the diallyl compounds, along with secondary interactions involving the allyl groups. The nature of these interactions was further elucidated using symmetry-adapted perturbation theory, which suggests that the primary HB interaction with S in DAS is weaker and more dispersive in nature compared to the primary HB in DAE. This supports the experimental observation of a tunneling splitting exclusively in the rotational spectrum of DAS-w, as the weaker contact allows water to undergo internal motions within the complex, as shown based on calculated transition state structures for possible tunneling pathways.
Collapse
Affiliation(s)
- Weslley G D P Silva
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
| | - Tamanna Poonia
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Jennifer van Wijngaarden
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
8
|
Bhadoria P, Ramanathan V. Combined FTIR/Raman spectroscopic studies and ab initio electronic structure calculations of Dithiothreitol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123399. [PMID: 37741101 DOI: 10.1016/j.saa.2023.123399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/19/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
A total of seven minimum energy geometries were obtained on exploring the conformational landscape of dithiothreitol (DTT) by varying the prominent dihedral angles in the molecule through a relaxed scan with a step size of 5° at B3LYP/cc-pVTZ with further geometry optimization at CCSD/cc-pVDZ level of theory. Single point energies were calculated for all the conformers at CCSD(T)/CBS limit with cc-pVNZ (N = T, Q) level of theory and revealed the similar energy pattern. The two conformers, namely G'TG'1 and G'TT, were found iso-energic even though they differed in their structure significantly and were of the lowest energy compared to others. Energies corresponding to the cyclic as well as other configurational counterpart of the global minimum were found much higher in energy compared to the global minimum structure. Intramolecular sulfur centered hydrogen bond was seen to stabilize the global minimum structure of DTT as revealed by AIM, NBO, FMO and ESP charge analysis. Computed NMR of DTT matched well with the experimental data gleaned from the literature. Vibrational spectra (Raman and IR) were measured and compared with computed normal modes of DTT, which were found in good agreement.
Collapse
Affiliation(s)
- Poonam Bhadoria
- Department of Chemistry, IIT(BHU), Varanasi 221005, U.P., India
| | - V Ramanathan
- Department of Chemistry, IIT(BHU), Varanasi 221005, U.P., India.
| |
Collapse
|
9
|
Özcan E, Vagolu SK, Gündüz MG, Stevanovic M, Kökbudak Z, Tønjum T, Nikodinovic-Runic J, Çetinkaya Y, Doğan ŞD. Novel Quinoline-Based Thiosemicarbazide Derivatives: Synthesis, DFT Calculations, and Investigation of Antitubercular, Antibacterial, and Antifungal Activities. ACS OMEGA 2023; 8:40140-40152. [PMID: 37929089 PMCID: PMC10620885 DOI: 10.1021/acsomega.3c03018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023]
Abstract
The discovery of new antimicrobial agents as a means of treating drug-resistant microbial pathogens is of utmost significance to overcome their immense risk to human well-being. The current investigation involves the development, synthesis, and assessment of the antimicrobial efficacy of novel quinoline derivatives incorporating a thiosemicarbazide functionality. To design the target compounds (QST1-QST14), we applied the molecular hybridization approach to link various thiosemicarbazides to the quinoline core with a sulfonyl group. Upon the synthesis and completion of structural characterization via spectroscopic techniques (1H NMR, 13C NMR, 15N NMR, IR, and HRMS), the title molecules were extensively evaluated for their potential antitubercular, antibacterial, and antifungal activities. N-(3-Chlorophenyl)-2-(quinolin-8-ylsulfonyl)hydrazine-1-carbothioamide (QST4), the most effective compound against Mycobacterium tuberculosis H37Rv, was also tested on isoniazid-resistant clinical isolates with katG and inhA promoter mutations. Based on molecular docking studies, QST4 was also likely to demonstrate its antimycobacterial activity through inhibition of the InhA enzyme. Furthermore, three derivatives (QST3, QST4, and QST10) with preferable antimicrobial and drug-like profiles were also shown to be nontoxic against human embryonic kidney (HEK) cells. All compounds were optimized by the density functional theory method using B3LYP with the 6-31+G(d,p) basis set. Structural analysis, natural bond orbital calculations of donor-acceptor interactions, molecular electrostatic potential analysis, and frontier molecular orbital analysis were carried out. Quantum chemical descriptors and charges on the atoms were determined to compare the strengths of the intramolecular hydrogen bonds formed and their stabilities. We determined that the sulfur atom forms a stronger intramolecular hydrogen bond than the nitrogen, oxygen, and fluorine atoms in these sulfonyl thiosemicarbazide derivatives.
Collapse
Affiliation(s)
- Esma Özcan
- Department
of Chemistry, Faculty of Science, Erciyes
University, 38039 Kayseri, Turkey
- Department
of Basic Sciences, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Siva Krishna Vagolu
- Unit
for Genome Dynamics, Department of Microbiology, University of Oslo, 0316 Oslo, Norway
| | - Miyase Gözde Gündüz
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, 06100 Ankara, Turkey
| | - Milena Stevanovic
- Institute
of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Zülbiye Kökbudak
- Department
of Chemistry, Faculty of Science, Erciyes
University, 38039 Kayseri, Turkey
| | - Tone Tønjum
- Unit
for Genome Dynamics, Department of Microbiology, University of Oslo, 0316 Oslo, Norway
- Unit for
Genome Dynamics, Department of Microbiology, Oslo University Hospital, 0316 Oslo, Norway
| | - Jasmina Nikodinovic-Runic
- Institute
of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Yasin Çetinkaya
- Department
of Chemistry, Faculty of Science, Atatürk
University, 25240 Erzurum, Turkey
| | - Şengül Dilem Doğan
- Department
of Basic Sciences, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| |
Collapse
|
10
|
Bhadoria P, Ramanathan V. Sulfur Centered Hydrogen Bonding in Thioglycolic Acid and Its Clusters: A Computational Exploration. J Phys Chem A 2023; 127:8095-8109. [PMID: 37738172 DOI: 10.1021/acs.jpca.3c04258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The conformational landscape of thioglycolic acid (TGA) was investigated by using the CCSD/cc-pVTZ level of theory. The GGC conformer was identified as the global minimum, followed by the GAC conformer. The calculated rotational constant for the GGC conformer exhibited good agreement with the previously reported experimental results. Subsequently, the study delved into the exploration of sulfur-centered hydrogen bonding in TGA's dimer and trimer clusters, employing the CCSD/cc-pVDZ level of theory. These clusters revealed the participation of both oxygen and sulfur atoms in noncovalent H-bonding, contributing to their stability. The presence of these noncovalent interactions in TGA clusters was elucidated through Atoms in Molecule (AIM), reduced density gradient (RDG), and natural bond order (NBO) analysis, while electrostatic potential (ESP) charge and vibrational mode analysis further supported these findings.
Collapse
Affiliation(s)
- Poonam Bhadoria
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Venkatnarayan Ramanathan
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
11
|
Panwaria P, Das A. Effect of Substituents on the Intramolecular n→π* Interaction in 3-[2-(Dimethylamino) phenyl] propanal: A Computational Study. J Phys Chem A 2023; 127:3339-3346. [PMID: 37036493 DOI: 10.1021/acs.jpca.2c08641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
n→π* non-covalent interaction (NCI) and hydrogen bond have similarity in terms of delocalization of the electron density between the two orbitals involved in the interaction. Hydrogen bond (X-H···Y) involves delocalization of the lone pair electrons (n) on the Y atom into the σ* orbital of the X-H bond. In contrast, the n→π* interaction deals with delocalizing the lone pair electrons (n) on the N, O, or S atom into the π* orbital of a C═O group or aromatic ring. Herein, we have shown a resemblance of this weak n→π* interaction with the relatively stronger hydrogen bond in terms of folding the side chains in flexible molecules. This work reports the study of folding of the flexible side-chain in 3-[2-(dimethylamino) phenyl] propanal (DMAPhP) through a N···C═O n→π* interaction using various computational approaches such as NBO, QTAIM, and NCI analyses. The folding of the molecule by the n→π* interaction observed in this study is found to be similar to that present in the secondary structures of peptides or proteins through hydrogen bonding interactions. Interestingly, the stabilization of the global minimum conformer of DMAPhP by the n→π* interaction demonstrates the importance of this NCI in providing conformational preferences in molecular systems. Another important finding of this study is that the theoretical redshift obtained in the C═O stretching frequency of the most stable conformer of the DMAPhP is contributed mostly by the n→π* interaction as the C═O group is not involved in hyperconjugation with any neighboring heteroatom, which is a common phenomenon in any ester or amide. We have also demonstrated here that the strength of the intramolecular n→π* interaction can be modulated by varying the electronic substituents at the para position of the donor group involved in the interaction.
Collapse
Affiliation(s)
- Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
12
|
Tripathi MK, Ramanathan V. Nature and Strength of Sulfur-Centered Hydrogen Bond in Methanethiol Aqueous Solutions. J Phys Chem A 2023; 127:2265-2273. [PMID: 36867672 DOI: 10.1021/acs.jpca.2c08314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Methanethiol (M) and water (W) clusters like dimers (M1W1, M2, and W2), trimers (M1W2, M2W1, M3, and W3), and tetramers (M1W3, M2W2, M3W1, M4, and W4) were studied to assess the strength of sulfur-centered hydrogen bonding using different levels of theories, viz, HF, MP2, MP3, MP4, B3LYP, B3LYP-D3, CCSD, CCSD(T)-F12, and CCSD(T) along with aug-cc-pVNZ (where N = D, T, and Q) basis sets. Interaction energies were found to be in the range of -3.3 to -5.3 kcal/mol for the dimers, -8.0 to -16.7 kcal/mol for the trimers, and -13.5 to -29.5 kcal/mol for the tetramers at the B3LYP-D3/CBS limit level of theory. Normal modes of vibrations computed at the B3LYP/cc-pVDZ level of theory were seen to be in good agreement with the experimental values. Local energy decomposition calculations using the DLPNO-CCSD(T) level of theory indicated the domination of electrostatic interactions' contribution to the interaction energy in all cluster systems. Furthermore, atoms in molecules and natural bond orbital calculations both carried out at the B3LYP-D3/aug-cc-pVQZ level of theory aided in visualizing the hydrogen bonds besides proving a rationale for the strength of the hydrogen bonds and thereby the stability of these cluster systems.
Collapse
Affiliation(s)
| | - V Ramanathan
- Department of Chemistry, IIT(BHU) Varanasi, Varanasi, U.P. 221005 India
| |
Collapse
|
13
|
Lu T, Zhang J, Xu Y, Wang Z, Feng G, Zeng Z. Hydrogen bond interactions between thioethers and amides: A joint rotational spectroscopic and theoretical study of the formamide⋯dimethyl sulfide adduct. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122199. [PMID: 36473293 DOI: 10.1016/j.saa.2022.122199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The rotational spectrum of the binary adduct of formamide (HCONH2) with dimethyl sulfide (DMS) has been investigated employing cavity-based Fourier transform microwave spectroscopy combined with theoretical computations. Experimentally, only one isomer of the adduct was unambiguously observed and assigned according to the theoretically predicted spectroscopic parameters, and its rotational spectrum displays the hyperfine splittings associated with the 14N nuclear quadrupole coupling effect. The observed isomer exhibits Cs symmetry, such that the ∠CSC angle of the DMS subunit is bisected by the ab-plane of the HCONH2 moiety. The two moieties in the detected isomer are connected via one primary NH···S and two secondary CH···O hydrogen bonds. Quantum theory of atoms in molecules (QTAIM), non-covalent interaction (NCI), natural bond orbital (NBO) and symmetry-adapted perturbation theory (SAPT) approaches were utilized for characterizing the intermolecular interactions occurring in the titled adduct. Additionally, the adduct of HCONH2 with dimethyl ether (DME) was also theoretically investigated to compare the difference in structure and energy characteristics between the NH···S and NH···O hydrogen bonds.
Collapse
Affiliation(s)
- Tao Lu
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China.
| | - Jiaqi Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Yugao Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Zhen Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Zhu Zeng
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
14
|
Kojasoy V, Tantillo DJ. Impacts of noncovalent interactions involving sulfur atoms on protein stability, structure, folding, and bioactivity. Org Biomol Chem 2022; 21:11-23. [PMID: 36345987 DOI: 10.1039/d2ob01602h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review discusses the various types of noncovalent interactions in which sulfur atoms participate and their effects on protein stability, structure, folding and bioactivity. Current approaches and recommendations for modelling these noncovalent interactions (in terms of both geometries and interaction energies) are highlighted.
Collapse
Affiliation(s)
- Volga Kojasoy
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA.
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
15
|
Metya S, Das A. S–H···O Hydrogen Bond Can Win over O–H···S Hydrogen Bond: Gas-Phase Spectroscopy of 2-Fluorothiophenol···H 2O Complex. J Phys Chem A 2022; 126:9178-9189. [DOI: 10.1021/acs.jpca.2c06083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Surajit Metya
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
16
|
Jena S, Routray C, Dutta J, Biswal HS. Hydrogen Bonding Directed Reversal of
13
C NMR Chemical Shielding. Angew Chem Int Ed Engl 2022; 61:e202207521. [DOI: 10.1002/anie.202207521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur Via-Jatni, District-Khurda PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Chinmay Routray
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur Via-Jatni, District-Khurda PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur Via-Jatni, District-Khurda PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Himansu S. Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur Via-Jatni, District-Khurda PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| |
Collapse
|
17
|
Jena S, Routray C, Dutta J, Biswal HS. Hydrogen‐Bonding Directed Reversal of 13C NMR Chemical Shielding. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Subhrakant Jena
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Chinmay Routray
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Juhi Dutta
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Himansu Sekhar Biswal
- National Institute of Science Education and Research School of Chemical Sciences Jatani 752050 Bhubaneswar INDIA
| |
Collapse
|
18
|
Panwaria P, Das A. Understanding the n → π* non-covalent interaction using different experimental and theoretical approaches. Phys Chem Chem Phys 2022; 24:22371-22389. [PMID: 35822956 DOI: 10.1039/d2cp02070j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a perspective on the recent understanding of weak n → π* interaction obtained using different experimental and theoretical approaches is presented. This interaction is purely an orbital interaction that involves the delocalization of the lone pair electrons (n) on nitrogen, oxygen, and sulfur to the π* orbitals of CO, CN, and aromatic rings. The n → π* interaction has been found to profoundly influence the stabilization of peptides, proteins, drugs, and various small molecules. Although the functional properties of this non-covalent interaction are still quite underestimated, there are recent demonstrations of applying this interaction to the regulation of synthetic chemistry, catalysis, and molecular recognition. However, the identification and quantification of the n → π* interaction remain a demanding task as this interaction is quite weak and based on the electron delocalization between the two orbitals, while hyperconjugation interactions between neighboring atoms and the group involved in the n → π* interaction are simultaneously present. This review provides a comprehensive picture of understanding the n → π* interaction using different experimental approaches such as the X-ray diffraction technique, and electronic, NMR, microwave, and IR spectroscopy, in addition to quantum chemistry calculations. A detailed understanding of the n → π* interaction can help in modulating the strength of this interaction, which will be further helpful in designing efficient drugs, synthetic peptides, peptidomimetics, etc.
Collapse
Affiliation(s)
- Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
19
|
Chandra S, Bag S. Attochemistry of hydrogen bonded amide and thioamide model complexes in protein following vertical ionization. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Goldsztejn G, Mundlapati VR, Brenner V, Gloaguen E, Mons M. Selenium in Proteins: Conformational Changes Induced by Se Substitution on Methionine, as Studied in Isolated Model Peptides by Optical Spectroscopy and Quantum Chemistry. Molecules 2022; 27:molecules27103163. [PMID: 35630640 PMCID: PMC9144663 DOI: 10.3390/molecules27103163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
The side-chain of methionine residues is long enough to establish NH⋯S H-bonds with neighboring carbonyl groups of the backbone, giving rise to so-called intra-residue 6δ and inter-residue 7δ H-bonds. The aim of the present article is to document how the substitution of sulfur with a selenium atom affects the H-bonding of the Met system. This was investigated both experimentally and theoretically by conformation-resolved optical spectroscopy, following an isolated molecule approach. The present work emphasizes the similarities of the Met and Sem residues in terms of conformational structures, energetics, NH⋯Se/S H-bond strength and NH stretch spectral shifts, but also reveals subtle behavior differences between them. It provides evidence for the sensitivity of the H-bonding network with the folding type of the Sem/Met side-chains, where a simple flip of the terminal part of the side-chain can induce an extra 50 cm−1 spectral shift of the NH stretch engaged in a 7δ NH⋯S/Se bond.
Collapse
|
21
|
Bridging H2O and H2S homomeric clusters via H2O-H2S mixed clusters: Impact of the changing ratio of H2O and H2S moieties. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Juanes M, Saragi RT, Pérez C, Enríquez L, Jaraíz M, Lesarri A. Torsional chirality and molecular recognition: the homo and heterochiral dimers of thenyl and furfuryl alcohol. Phys Chem Chem Phys 2022; 24:8999-9006. [PMID: 35380144 DOI: 10.1039/d2cp00479h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Furfuryl alcohol and thenyl alcohol contain a labile torsional chiral center, producing transiently chiral enantiomers interconverting in the nanosecond time-scale. We explored chiral molecular recognition using the weakly-bound intermolecular dimers of both alcohols, freezing stereomutation. Supersonic jet broadband microwave spectroscopy revealed homo and heterochiral diastereoisomers for each alcohol dimer and the structural characteristics of the clusters. All dimers are primarily stabilized by a moderately intense O-H⋯O hydrogen bond, but differ in the secondary interactions, which introduce additional hydrogen bonds either to the ring oxygen in furfuryl alcohol or to the π ring system in thenyl alcohol. Density-functional calculations (B2PLYP-D3(BJ)/def2-TZVP) show no clear preferences for a particular stereochemistry in the dimers, with relative energies of the order 1-2 kJ mol-1. The study suggests opportunities for the investigation of chiral recognition in molecules with torsional barriers in between transient and permanent interconversion regimes.
Collapse
Affiliation(s)
- Marcos Juanes
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias - I.U. CINQUIMA, Universidad de Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain.
| | - Rizalina Tama Saragi
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias - I.U. CINQUIMA, Universidad de Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain.
| | - Cristóbal Pérez
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias - I.U. CINQUIMA, Universidad de Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain.
| | - Lourdes Enríquez
- Departamento de Electrónica, ETSIT, Universidad de Valladolid, Paseo de Belén 15, 47011 Valladolid, Spain
| | - Martín Jaraíz
- Departamento de Electrónica, ETSIT, Universidad de Valladolid, Paseo de Belén 15, 47011 Valladolid, Spain
| | - Alberto Lesarri
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias - I.U. CINQUIMA, Universidad de Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain.
| |
Collapse
|
23
|
Paul A, Thomas R. Evidences for sulfur centered hydrogen bond with sulfur atoms as a donor in aromatic thiols and aliphatic thiols in aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Cuc NTT, Phan CTD, Nhung NTA, Nguyen MT, Trung NT, Ngan VT. Theoretical Aspects of Nonconventional Hydrogen Bonds in the Complexes of Aldehydes and Hydrogen Chalcogenides. J Phys Chem A 2021; 125:10291-10302. [PMID: 34818019 DOI: 10.1021/acs.jpca.1c06708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogen bonds (H-bonds) in the complexes between aldehydes and hydrogen chalcogenides, XCHO...nH2Z with X = H, F, Cl, Br, and CH3, Z = O, S, Se, and Te, and n = 1,2, were investigated using high-level ab initio calculations. The Csp2-H...O H-bonds are found to be about twice as strong as the Csp2-H...S/Se/Te counterparts. Remarkably, the S/Se/Te-H...S/Se/Te H-bonds are 4.5 times as weak as the O-H...O ones. The addition of the second H2Z molecule into binary systems induces stronger complexes and causes a positive cooperative effect in ternary complexes. The blue shift of Csp2-H stretching frequency involving the Csp2-H...Z H-bond sharply increases when replacing one H atom in HCHO by a CH3 group. In contrast, when one H atom in HCHO is substituted with a halogen, the magnitude of blue-shifting of the Csp2-H...Z H-bond becomes smaller. The largest blue shift up to 92 cm-1 of Csp2-H stretching frequency in Csp2-H...O H-bond in CH3CHO...2H2O has rarely been observed and is much greater than that in the cases of the Csp2-H...S/Se/Te ones. The Csp2-H blue shift of Csp2-H...Z bonds in the halogenated aldehydes is converted into a red shift when H2O is replaced by a heavier analogue, such as H2S, H2Se, or H2Te. The stability and classification of nonconventional H-bonds including Csp2-H...Se/Te, Te-H...Te, and Se/Te-H...O have been established for the first time.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Cuc
- Laboratory of Computational Chemistry and Modelling (LCCM), Faculty of Natural Sciences, Quy Nhon University, Quy Nhon 55100, Vietnam
| | - Cam-Tu Dang Phan
- Laboratory of Computational Chemistry and Modelling (LCCM), Faculty of Natural Sciences, Quy Nhon University, Quy Nhon 55100, Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University, Hue 49000, Vietnam
| | | | - Nguyen Tien Trung
- Laboratory of Computational Chemistry and Modelling (LCCM), Faculty of Natural Sciences, Quy Nhon University, Quy Nhon 55100, Vietnam
| | - Vu Thi Ngan
- Laboratory of Computational Chemistry and Modelling (LCCM), Faculty of Natural Sciences, Quy Nhon University, Quy Nhon 55100, Vietnam
| |
Collapse
|
25
|
Ma X, Zhu Y, Yu J, Zhao G, Duanmu J, Yuan Y, Chang XP, Xu D, Zhou Q. Unprecedented observation and characterization of sulfur-centred bifurcated hydrogen bonds. Phys Chem Chem Phys 2021; 23:26519-26523. [PMID: 34807205 DOI: 10.1039/d1cp04601b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Owing to the small electronegativity of the sulfur atom, it is commonly supposed that at most one weak H-bond can be formed between a sulfur atom and an H-bond donor. In this paper, an unprecedented 2 : 1 binding species generated from two molecules of phenol and a molecule of thioether was observed and characterized by various nuclear magnetic resonance (NMR) techniques, Fourier transform-infrared (FT-IR) techniques and density functional theory (DFT) calculations, revealing the formation of sulfur-centred O-H⋯S⋯H-O bifurcated H-bonds. This work may provide a simple and efficient method for the quantitative analysis of weak H-bonds between small organic molecules.
Collapse
Affiliation(s)
- Xiantao Ma
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Yingying Zhu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Jing Yu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Geng Zhao
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Jiaxin Duanmu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Yiyun Yuan
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Dongli Xu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| |
Collapse
|
26
|
Chirality, structure and hydrogen bonding in dithiols: Rotational spectrum of the chiral and meso 2,3-butanedithiol. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Molecular Recognition, Transient Chirality and Sulfur Hydrogen Bonding in the Benzyl Mercaptan Dimer. Symmetry (Basel) 2021. [DOI: 10.3390/sym13112022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The homodimers of transiently chiral molecules offer physical insight into the process of molecular recognition, the preference for homo or heterochiral aggregation and the nature of the non-covalent interactions stabilizing the adducts. We report the observation of the benzyl mercaptan dimer in the isolation conditions of a supersonic jet expansion, using broadband (chirped-pulse) microwave spectroscopy. A single homochiral isomer was observed for the dimer, stabilized by a cooperative sequence of S-H···S and S-H···π hydrogen bonds. The structural data, stabilization energies and energy decomposition describe these non-covalent interactions as weak and dispersion-controlled. A comparison is also provided with the benzyl alcohol dimer.
Collapse
|
28
|
Krupa J, Wierzejewska M, Lundell J. Structure and IR Spectroscopic Properties of HNCO Complexes with SO 2 Isolated in Solid Argon. Molecules 2021; 26:molecules26216441. [PMID: 34770850 PMCID: PMC8587861 DOI: 10.3390/molecules26216441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
FTIR spectroscopy was combined with the matrix isolation technique and quantum chemical calculations with the aim of studying complexes of isocyanic acid with sulfur dioxide. The structures of the HNCO⋯SO2 complexes of 1:1, 1:2 and 2:1 stoichiometry were optimized at the MP2, B3LYPD3, B2PLYPD3 levels of theory with the 6-311++G(3df,3pd) basis set. Five stable 1:1 HNCO⋯SO2 complexes were found. Three of them contain a weak N-H⋯O hydrogen bond, whereas two other structures are stabilized by van der Waals interactions. The analysis of the HNCO/SO2/Ar spectra after deposition indicates that mostly the 1:1 hydrogen-bonded complexes are present in argon matrices, with a small amount of the van der Waals structures. Upon annealing, complexes of the 1:2 stoichiometry were detected, as well.
Collapse
Affiliation(s)
- Justyna Krupa
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland;
- Correspondence: (J.K.); (J.L.); Tel.: +358-40-744-5270 (J.L.)
| | - Maria Wierzejewska
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland;
| | - Jan Lundell
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
- Correspondence: (J.K.); (J.L.); Tel.: +358-40-744-5270 (J.L.)
| |
Collapse
|
29
|
Saigusa H, Oyama A, Kitamura S, Asami H. Structural Characterization of 6-Thioguanosine and Its Monohydrate in the Gas Phase. J Phys Chem A 2021; 125:7217-7225. [PMID: 34433270 DOI: 10.1021/acs.jpca.1c05219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Detailed structural analysis of 6-thioguanosine (6TGs) in relation to its tautomerization and sugar conformation is performed in the gas phase using UV and IR spectroscopy combined with ab initio calculations. We have observed a thiol tautomer of 6TGs with its sugar moiety in the syn conformation that is stabilized by a strong intramolecular H-bonding between O5'H of the sugar and N3 atom of the guanine moiety. This observation is consistent with previous results for guanosine (Gs) in which the corresponding enol form is solely detected. We have also identified a monohydrate of 6TGs consisting of a thiol tautomer with the water linking guanine moiety and sugar OH group. It is demonstrated that hydration behavior of 6TGs is significantly different from that of Gs as a result of a weaker H-bonding ability of the thiol group.
Collapse
Affiliation(s)
- Hiroyuki Saigusa
- Graduate School for Bio- and Nanosystem Sciences, Yokohama City University, Yokohama 236-0027, Japan
| | - Ayumi Oyama
- Graduate School for Bio- and Nanosystem Sciences, Yokohama City University, Yokohama 236-0027, Japan
| | - Saki Kitamura
- Graduate School for Bio- and Nanosystem Sciences, Yokohama City University, Yokohama 236-0027, Japan
| | - Hiroya Asami
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
30
|
Orlov AA, Marcou G, Horvath D, Cabodevilla AE, Varnek A, Meyer FD. Computer-Aided Design of New Physical Solvents for Hydrogen Sulfide Absorption. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alexey A. Orlov
- Laboratory of Chemoinformatics, Faculty of Chemistry, University of Strasbourg, Strasbourg, 67081, France
| | - Gilles Marcou
- Laboratory of Chemoinformatics, Faculty of Chemistry, University of Strasbourg, Strasbourg, 67081, France
| | - Dragos Horvath
- Laboratory of Chemoinformatics, Faculty of Chemistry, University of Strasbourg, Strasbourg, 67081, France
| | - Alvaro Echeverria Cabodevilla
- Total Exploration Production, Development and Support to Operations, Liquefied Natural Gas—Acid Gas Entity, TOTAL SA, Paris, 92078, France
| | - Alexandre Varnek
- Laboratory of Chemoinformatics, Faculty of Chemistry, University of Strasbourg, Strasbourg, 67081, France
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Japan
| | - Frédérick de Meyer
- Total Exploration Production, Development and Support to Operations, Liquefied Natural Gas—Acid Gas Entity, TOTAL SA, Paris, 92078, France
- MINES ParisTech, PSL University, Centre de thermodynamique des procédés (CTP), 35 rue St Honoré Fontainebleau, 77300, France
| |
Collapse
|
31
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
32
|
Kumar A, Kumar P. Formation of unexpected S-S covalent bonds in H 2S dimers under confinement. Phys Chem Chem Phys 2021; 23:5963-5968. [PMID: 33666599 DOI: 10.1039/d0cp05807f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The present work investigates the effect of confinement on the hydrogen bonding interactions in H2S dimers. The interiors of different sized fullerenes (C60, C70, C84, and C120) have been used to model the effect of confinement. It was found that as the degree of confinement increases, the hydrogen bonding between H2S molecules disappears and sulphur-sulphur interactions appear. We obtained clear computational evidence that, inside C60, the H2S dimer is bound by a covalent bond between two sulphur atoms. It was also found that the strength of the S-S bond inside fullerenes is linked to the amount of charge transfer from the H2S dimer to the fullerene.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| | - Pradeep Kumar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| |
Collapse
|
33
|
Bhattacharyya S, Ghosh S, Wategaonkar S. O-H stretching frequency red shifts do not correlate with the dissociation energies in the dimethylether and dimethylsulfide complexes of phenol derivatives. Phys Chem Chem Phys 2021; 23:5718-5739. [PMID: 33662068 DOI: 10.1039/d0cp01589j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this perspective, we present a comprehensive report on the spectroscopic and computational investigations of the hydrogen bonded (H-bonded) complexes of Me2O and Me2S with seven para-substituted H-bond donor phenols. The salient finding was that although the dissociation energies, D0, of the Me2O complexes were consistently higher than those of the analogous Me2S complexes, the red-shifts in phenolic O-H frequencies, Δν(O-H), showed the exactly opposite trend. This is in contravention of the general perception that the red shift in the X-H stretching frequency in the X-HY hydrogen bonded complexes is a reliable indicator of H-bond strength (D0), a concept popularly known as the Badger-Bauer rule. This is also in contrast to the trend reported for the H-bonded complexes of H2S/H2O with several para substituted phenols of different pKa values wherein the oxygen centered hydrogen bonded (OCHB) complexes consistently showed higher Δν(O-H) and D0 compared to those of the analogous sulfur centered hydrogen bonded (SCHB) complexes. Our effort was to understand these intriguing observations based on the spectroscopic investigations of 1 : 1 complexes in combination with a variety of high level quantum chemical calculations. Ab initio calculations at the MP2 level and the DFT calculations using various dispersion corrected density functionals (including DFT-D3) were performed on counterpoise corrected surfaces to compute the dissociation energy, D0, of the H-bonded complexes. The importance of anharmonic frequency computations is underscored as they were able to correctly reproduce the observed trend in the relative OH frequency shifts unlike the harmonic frequency computations. We have attempted to find a unified correlation that would globally fit the observed red shifts in the O-H frequency with the H-bonding strength for the four bases, namely, H2S, H2O, Me2O, and Me2S, in this set of H-bond donors. It was found that the proton affinity normalized Δν(O-H) values scale very well with the H-bond strength.
Collapse
Affiliation(s)
- Surjendu Bhattacharyya
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.
| | - Sanat Ghosh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.
| | - Sanjay Wategaonkar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.
| |
Collapse
|
34
|
Li X, Lu T, Obenchain DA, Zhang J, Herbers S, Grabow JU, Feng G. The Characteristics of Disulfide-Centered Hydrogen Bonds. Angew Chem Int Ed Engl 2021; 60:5838-5842. [PMID: 33258264 DOI: 10.1002/anie.202014364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 11/10/2022]
Abstract
The disulfide-centered hydrogen bonds in the three different model systems of diethyl disulfide⋅⋅⋅H2 O/H2 CO/HCONH2 clusters were characterized by high-resolution Fourier transform microwave spectroscopy and quantum chemical computations. The global minimum energy structures for each cluster are experimentally observed and are characterized by one of the three different S-S⋅⋅⋅H-C/N/O disulfide-centered hydrogen bonds and two O⋅⋅⋅H-C hydrogen bonds. Non-covalent interaction and natural bond orbital analyses further confirm the experimental observations. The symmetry-adapted perturbation theory (SAPT) analysis reveals that electrostatic is dominant in diethyl disulfide⋅⋅⋅H2 O/HCONH2 clusters being consistent with normal hydrogen bonds, whilst dispersion takes over in diethyl disulfide⋅⋅⋅H2 CO cluster. Our study gives accurate structural parameters for the disulfide bond involved non-covalent clusters providing important benchmarking data for the theoretical evaluation of more complex systems.
Collapse
Affiliation(s)
- Xiaolong Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.,Institut für Physikalische Chemie and Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
| | - Tao Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| | - Daniel A Obenchain
- Institut für Physikalische Chemie and Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
| | - Jiaqi Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| | - Sven Herbers
- Institut für Physikalische Chemie and Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
| | - Jens-Uwe Grabow
- Institut für Physikalische Chemie and Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| |
Collapse
|
35
|
Saragi R, Juanes M, Pérez C, Pinacho P, Tikhonov DS, Caminati W, Schnell M, Lesarri A. Switching Hydrogen Bonding to π-Stacking: The Thiophenol Dimer and Trimer. J Phys Chem Lett 2021; 12:1367-1373. [PMID: 33507084 PMCID: PMC8812119 DOI: 10.1021/acs.jpclett.0c03797] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We used jet-cooled broadband rotational spectroscopy to explore the balance between π-stacking and hydrogen-bonding interactions in the self-aggregation of thiophenol. Two different isomers were detected for the thiophenol dimer, revealing dispersion-controlled π-stacked structures anchored by a long S-H···S sulfur hydrogen bond. The weak intermolecular forces allow for noticeable internal dynamics in the dimers, as tunneling splittings are observed for the global minimum. The large-amplitude motion is ascribed to a concerted inversion motion between the two rings, exchanging the roles of the proton donor and acceptor in the thiol groups. The determined torsional barrier of B2 = 250.3 cm-1 is consistent with theoretical predictions (290-502 cm-1) and the monomer barrier of 277.1(3) cm-1. For the thiophenol trimer, a symmetric top structure was assigned in the spectrum. The results highlight the relevance of substituent effects to modulate π-stacking geometries and the role of the sulfur-centered hydrogen bonds.
Collapse
Affiliation(s)
- Rizalina
Tama Saragi
- Departamento
de Química Física y Química Inorgánica,
Facultad de Ciencias-I.U. CINQUIMA, Universidad
de Valladolid, Paseo de Belén, 7, E-47011 Valladolid, Spain
| | - Marcos Juanes
- Departamento
de Química Física y Química Inorgánica,
Facultad de Ciencias-I.U. CINQUIMA, Universidad
de Valladolid, Paseo de Belén, 7, E-47011 Valladolid, Spain
| | - Cristóbal Pérez
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
- Institut
für Physikalische Chemie, Christian-Albrechts-Universität
zu Kiel, Max-Eyth-Str.
1, D-24118 Kiel, Germany
| | - Pablo Pinacho
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
- Institut
für Physikalische Chemie, Christian-Albrechts-Universität
zu Kiel, Max-Eyth-Str.
1, D-24118 Kiel, Germany
| | - Denis S. Tikhonov
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
- Institut
für Physikalische Chemie, Christian-Albrechts-Universität
zu Kiel, Max-Eyth-Str.
1, D-24118 Kiel, Germany
| | - Walther Caminati
- Dipartimento
di Chimica Giacomo Ciamician, Via Selmi, 2, I-40126 Bologna, Italy
| | - Melanie Schnell
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
- Institut
für Physikalische Chemie, Christian-Albrechts-Universität
zu Kiel, Max-Eyth-Str.
1, D-24118 Kiel, Germany
| | - Alberto Lesarri
- Departamento
de Química Física y Química Inorgánica,
Facultad de Ciencias-I.U. CINQUIMA, Universidad
de Valladolid, Paseo de Belén, 7, E-47011 Valladolid, Spain
| |
Collapse
|
36
|
Mishra KK, Borish K, Singh G, Panwaria P, Metya S, Madhusudhan MS, Das A. Observation of an Unusually Large IR Red-Shift in an Unconventional S-H···S Hydrogen-Bond. J Phys Chem Lett 2021; 12:1228-1235. [PMID: 33492971 DOI: 10.1021/acs.jpclett.0c03183] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The S-H···S non-covalent interaction is generally known as an extremely unconventional weak hydrogen-bond in the literature. The present gas-phase spectroscopic investigation shows that the S-H···S hydrogen-bond can be as strong as any conventional hydrogen-bond in terms of the IR red-shift in the stretching frequency of the hydrogen-bond donor group. Herein, the strength of the S-H···S hydrogen-bond has been determined by measuring the red-shift (∼150 cm-1) of the S-H stretching frequency in a model complex of 2-chlorothiophenol and dimethyl sulfide using isolated gas-phase IR spectroscopy coupled with quantum chemistry calculations. The observation of an unusually large IR red-shift in the S-H···S hydrogen-bond is explained in terms of the presence of a significant amount of charge-transfer interactions in addition to the usual electrostatic interactions. The existence of ∼750 S-H···S interactions between the cysteine and methionine residues in 642 protein structures determined from an extensive Protein Data Bank analysis also indicates that this interaction is important for the structures of proteins.
Collapse
Affiliation(s)
- Kamal K Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Kshetrimayum Borish
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Gulzar Singh
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Surajit Metya
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - M S Madhusudhan
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| |
Collapse
|
37
|
Li X, Lu T, Obenchain DA, Zhang J, Herbers S, Grabow J, Feng G. The Characteristics of Disulfide‐Centered Hydrogen Bonds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaolong Li
- School of Chemistry and Chemical Engineering Chongqing University Daxuecheng South Rd. 55 401331 Chongqing China
- Institut für Physikalische Chemie and Elektrochemie Gottfried Wilhelm Leibniz Universität Hannover Callinstraße 3A 30167 Hannover Germany
| | - Tao Lu
- School of Chemistry and Chemical Engineering Chongqing University Daxuecheng South Rd. 55 401331 Chongqing China
| | - Daniel A. Obenchain
- Institut für Physikalische Chemie and Elektrochemie Gottfried Wilhelm Leibniz Universität Hannover Callinstraße 3A 30167 Hannover Germany
| | - Jiaqi Zhang
- School of Chemistry and Chemical Engineering Chongqing University Daxuecheng South Rd. 55 401331 Chongqing China
| | - Sven Herbers
- Institut für Physikalische Chemie and Elektrochemie Gottfried Wilhelm Leibniz Universität Hannover Callinstraße 3A 30167 Hannover Germany
| | - Jens‐Uwe Grabow
- Institut für Physikalische Chemie and Elektrochemie Gottfried Wilhelm Leibniz Universität Hannover Callinstraße 3A 30167 Hannover Germany
| | - Gang Feng
- School of Chemistry and Chemical Engineering Chongqing University Daxuecheng South Rd. 55 401331 Chongqing China
| |
Collapse
|
38
|
Sun ZZ, Zhu N, Pan X, Wang G, Li ZF, Xin XL, Han HL, Feng YB, Jin QH, Yang YP, Yang W. A new application of terahertz time-domain absorption spectra in luminescent complexes: characterization of the C-Hπ weak interactions in Cu(I) complexes. Dalton Trans 2021; 50:10214-10224. [PMID: 34232237 DOI: 10.1039/d1dt01023a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Six Cu(i) complexes, [Cu(2,3-f)(bdppmapy)]BF4 (1), [Cu(2,3-f)(bdppmapy)]ClO4 (2), [Cu(2,3-f)(bdppmapy)]CF3SO3 (3), [Cu(imidazo[4,5-f])(bdppmapy)]BF4 (4), [Cu(imidazo[4,5-f])(bdppmapy)]ClO4 (5), and [Cu(imidazo[4,5-f])(bdppmapy)]CF3SO3·MeOH (6·MeOH) (bdppmapy = N,N-bis[(diphenylphosphino)methyl]-2-pyridinamine, 2,3-f = pyrazine[2,3-f][1,10]-phenanthroline, and imidazo[4,5-f] = 1H-imidazo[4,5-f][1,10]-phenanthroline), have been synthesized to explore the effects of counteranions on their crystal structures, photophysical properties, and terahertz (THz) spectra. Time-dependent density functional theory (TD-DFT) shows that the luminescence performance of these complexes is attributed to the metal-to-ligand charge transfer (MLCT) in combination with ligand-to-ligand charge transfer (LLCT). In complexes 1-3, the characteristic peak at 1.4 THz is mainly related to the C-Hπ interaction formed by the H atom on the 4#/5# position of 2,3-f and the benzene ring from the bdppmapy on the adjacent asymmetric unit. The common C-Hπ interaction enhances the rigidity of the structure and has non-negligible influence on the photoluminescence quantum yields (PLQYs): the stronger the C-Hπ interaction is, the higher the quantum yield (QY) is. In complexes 4-6, similar absorption peaks (1.10-1.30 THz) are mainly related to the C-Hπ interactions, and strong absorption peaks (1.50-1.90 THz) are affected by the typical hydrogen bonds N-HF/O and O-HO. These results show that some weak interactions can be characterized by THz time-domain spectroscopy (THz-TDS). So, the THz spectroscopy method would make it possible to tune some of the weak interactions in complex structures to regulate the luminescence of materials.
Collapse
Affiliation(s)
- Zhen-Zhou Sun
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Ning Zhu
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Xun Pan
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Zhong-Feng Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Xiu-Lan Xin
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Hong-Liang Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Yue-Bing Feng
- School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Qiong-Hua Jin
- Department of Chemistry, Capital Normal University, Beijing 100048, China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yu-Ping Yang
- School of Science, Minzu University of China, Beijing 100081, China
| | - Wei Yang
- Faculty of Food Science and Technology, Suzhou Polytechnical Institute of Agriculture, Suzhou 215008, P. R. China.
| |
Collapse
|
39
|
Ghosh M, Panwaria P, Tothadi S, Das A, Khan S. Bis(silanetellurone) with C-H···Te Interaction. Inorg Chem 2020; 59:17811-17821. [PMID: 33215925 DOI: 10.1021/acs.inorgchem.0c03098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Herein, we report the synthesis of a series of bis(silanechalcogenones) [Ch = Te (2), S (3), or Se (4)] using an N-heterocyclic silylene-based SiCSi pincer ligand (1). 2 is the first example of a bis(silanetellurone) derivative. The bonding patterns of 2-4 were extensively studied by natural bond orbital, quantum theory of atoms in molecules, and noncovalent interaction index analyses, and these exhibit weak C-H···Ch interaction. The analogous reaction of 1 with trimethyl N-oxide produced a novel bis(cyclosiloxane) derivative (5). All of the complexes are duly characterized by single-crystal X-ray diffraction studies, multinuclear nuclear magnetic resonance (1H, 13C, and 29Si) spectroscopy, and high-resolution mass spectrometry.
Collapse
Affiliation(s)
- Moushakhi Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Srinu Tothadi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
40
|
Martins JBL, Quintino RP, Politi JRDS, Sethio D, Gargano R, Kraka E. Computational analysis of vibrational frequencies and rovibrational spectroscopic constants of hydrogen sulfide dimer using MP2 and CCSD(T). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118540. [PMID: 32502813 DOI: 10.1016/j.saa.2020.118540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have shown that the weakly bonded H2S dimer demands high level quantum chemical calculations to reproduce experimental values. We investigated the hydrogen bonding of H2S dimer using MP2 and CCSD(T) levels of theory in combination with aug-cc-pV(D,T,Q)Z basis sets. More precisely, the binding energies, potential energy curves, rovibrational spectroscopic constants, decomposition lifetime, and normal vibrational frequencies were calculated. In addition, we introduced the local mode analysis of Konkoli-Cremer to quantify the hydrogen bonding in the H2S dimer as well as providing for the first time the comprehensive decomposition of normal vibrational modes into local modes contributions, and a decomposition lifetime based on rate constant. The local mode force constant of the H2S dimer hydrogen bond is smaller than that of the water dimer, in accordance with the weaker hydrogen bonding in the H2S dimer.
Collapse
Affiliation(s)
- João B L Martins
- Institute of Chemistry, University of Brasília, Brasília, DF 70910-900, Brazil.
| | - Rabeshe P Quintino
- Institute of Chemistry, University of Brasília, Brasília, DF 70910-900, Brazil
| | - José R Dos S Politi
- Institute of Chemistry, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Daniel Sethio
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, United States
| | - Ricardo Gargano
- Institute of Physics, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, United States
| |
Collapse
|
41
|
Jena S, Tulsiyan KD, Rana A, Choudhury SS, Biswal HS. Non-conventional Hydrogen Bonding and Aromaticity: A Systematic Study on Model Nucleobases and Their Solvated Clusters. Chemphyschem 2020; 21:1826-1835. [PMID: 32506748 DOI: 10.1002/cphc.202000386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/02/2020] [Indexed: 12/25/2022]
Abstract
The conceptual development of aromaticity is essential to rationalize and understand the structure and behavior of aromatic heterocycles. This work addresses for the first time, the interconnection between aromaticity and sulfur/selenium centered hydrogen bonds (S/SeCHBs) involved in representative heterocycle models of canonical nucleobases (2-Pyridone; 2PY) and its sulfur (2-Thiopyridone; 2TPY) and selenium (2-Selenopyridone; 2SePY) analogs. The nucleus-independent chemical shift (NICS) and gauge induced magnetic current density (GIMIC) values suggested significant reduction of aromaticity upon replacement of exocyclic carbonyl oxygen with sulfur and selenium. However, we observed two-fold (57 %) and three-fold (80 %) enhancement in the aromaticity for 2TPY dimer, and 2SePY dimer, respectively which are connected through S/SeCHBs. Aromaticity enhancement was also noticed in 1 : 1 H-bonded complexes (heterodimers), micro hydrated clusters and for bulk hydration. It is expected that exocyclic S and Se incorporation into heterocycles without compromising aromatic loss would definitely reinforce to design new supramolecular building blocks via S/SeCH-bonded complexes.
Collapse
Affiliation(s)
- Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050, Bhubaneswar, INDIA.,Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
| | - Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050, Bhubaneswar, INDIA.,Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
| | - Abhijit Rana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050, Bhubaneswar, INDIA.,Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
| | - Shubhranshu S Choudhury
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050, Bhubaneswar, INDIA.,Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050, Bhubaneswar, INDIA.,Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
| |
Collapse
|
42
|
Chand A, Sahoo DK, Rana A, Jena S, Biswal HS. The Prodigious Hydrogen Bonds with Sulfur and Selenium in Molecular Assemblies, Structural Biology, and Functional Materials. Acc Chem Res 2020; 53:1580-1592. [PMID: 32677432 DOI: 10.1021/acs.accounts.0c00289] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrogen bonds (H-bonds) play important roles in imparting functionality to the basic molecules of life by stabilizing their structures and directing their interactions. Numerous studies have been devoted to understanding H-bonds involving highly electronegative atoms like nitrogen, oxygen, and halogens and consequences of those H-bonds in chemical reactions, catalysis, and structure and function of biomolecules; but the involvement of less electronegative atoms like sulfur and selenium in H-bond formation establishes the concept of noncanonical H-bonds. Initially belittled for the "weak" nature of their interactions, these perceptions have gradually evolved over time through dedicated efforts by several research groups. This has been facilitated by advancements in experimental methods for their detection through gas-phase laser spectroscopy and solution NMR spectroscopy, as well as through theoretical predictions from high level quantum chemical calculations.In this Account, we present insights into the versatility of the sulfur and selenium centered H-bonds (S/SeCHBs) by highlighting their multifarious applications in various fields from chemical reactions to optoelectronic properties to structural biology. Our group has highlighted the significance and strength of such H-bonds in natural and modified biomolecules. Here, we have reviewed several molecular assemblies, biomolecules, and functional materials, where the role of these H-bonds is pivotal in influencing biological functions. It is worth mentioning here that the precise experimental data obtained from gas-phase laser spectroscopy have contributed considerably to changing the existing perceptions toward S/SeCHBs. Thus, molecular beam experiments, though difficult to perform on smaller model thio- or seleno-substituted Molecules, etc. (amides, nucleobases, drug molecules), are inevitable to gather elementary knowledge and convincing concepts on S/SeCHBs that can be extended from a small four-atom sulfanyl dimer to a large 14 kDa iron-sulfur protein, ferredoxin. These H-bonds can also tailor a fascinating array of molecular frameworks and design supramolecular assemblies by inter- and intralinking of individual "molecular Lego-like" units.The discussion is indeed intriguing when it turns to the usage of S/SeCHBs in facile synthetic strategies like tuning regioselectivity in reactions, as well as invoking phenomena like dual phosphorescence and chemiluminescence. This is in addition to our investigations of the dispersive nature of the hydrogen bond between metal hydrides and sulfur or selenium as acceptor, which we anticipate would lead to progress in the areas of proton and hydride transfer, as well as force-field design. This Account demonstrates how ease of fabrication, enhanced efficiency, and alteration of physicochemical properties of several functional materials is facilitated owing to the presence of S/SeCHBs. Our efforts have been instrumental in the evaluation of various S/SeCHBs in flue gas capture, as well as design of organic energy harvesting materials, where dipole moment and polarizability have important roles to play. We hope this Account invokes newer perspectives with regard to how H-bonds with sulfur and selenium can be adequately adopted for crystal engineering, for more photo- and biophysical studies with different spectroscopic methods, and for developing next-generation field-effect transistors, batteries, superconductors, and organic thin-film transistors, among many other multifunctional materials for the future.
Collapse
Affiliation(s)
- Apramita Chand
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Dipak Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Abhijit Rana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Himansu S. Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
43
|
|
44
|
Perkins MA, Barlow KR, Dreux KM, Tschumper GS. Anchoring the hydrogen sulfide dimer potential energy surface to juxtapose (H2S)2 with (H2O)2. J Chem Phys 2020; 152:214306. [DOI: 10.1063/5.0008929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Morgan A. Perkins
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, USA
| | - Kayleigh R. Barlow
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, USA
| | - Katelyn M. Dreux
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, USA
| | - Gregory S. Tschumper
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, USA
| |
Collapse
|
45
|
Andersson Å, Poline M, Kodambattil M, Rebrov O, Loire E, Maître P, Zhaunerchyk V. Structure of Proton-Bound Methionine and Tryptophan Dimers in the Gas Phase Investigated with IRMPD Spectroscopy and Quantum Chemical Calculations. J Phys Chem A 2020; 124:2408-2415. [PMID: 32106670 PMCID: PMC7307929 DOI: 10.1021/acs.jpca.9b11811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
The
structures of three proton-bound dimers (Met2H+, MetTrpH+, and Trp2H+) are
investigated in the gas phase with infrared multiple photon disassociation
(IRMPD) spectroscopy in combination with quantum chemical calculations.
Their IRMPD spectra in the range of 600–1850 cm–1 are obtained experimentally using an FT-ICR mass spectrometer and
the CLIO free electron laser as an IR light source. The most abundant
conformers are elucidated by comparing the IRMPD spectra with harmonic
frequencies obtained at the B3LYP-GD3BJ/6-311++G** level of theory.
Discrepancies between the experimental and theoretical data in the
region of 1500–1700 cm–1 are attributed to
the anharmonicity of the amino bending modes. We confirm the result
of a previous IRMPD study that the structure of gas-phase Trp2H+ is charge-solvated but find that there are more
stable structures than originally reported (Feng, R.; Yin, H.; Kong,
X. Rapid Commun. Mass Spectrom.2016, 30, 24–28). In addition, gas-phase Met2H+ and MetTrpH+ have been revealed to
have charge-solvated structures. For all three dimers, the most stable
conformer is found to be of type A. The spectrum of Met2H+, however, cannot be explained without some abundance
of type B charge-solvated conformers as well as salt-bridged structures.
Collapse
Affiliation(s)
- Åke Andersson
- Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Mathias Poline
- Department of Physics, Stockholm University, 114 19 Stockholm, Sweden
| | - Meena Kodambattil
- Department of Physics, University of Gothenburg, 405 30 Gothenburg, Sweden.,International School of Photonics, Cochin University of Science and Technology, Kochi, Kerala 682022, India
| | - Oleksii Rebrov
- Department of Physics, Stockholm University, 114 19 Stockholm, Sweden
| | - Estelle Loire
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, Orsay 91405, France
| | - Philippe Maître
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, Orsay 91405, France
| | - Vitali Zhaunerchyk
- Department of Physics, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
46
|
Juanes M, Saragi RT, Pinacho R, Rubio JE, Lesarri A. Sulfur hydrogen bonding and internal dynamics in the monohydrates of thenyl mercaptan and thenyl alcohol. Phys Chem Chem Phys 2020; 22:12412-12421. [DOI: 10.1039/d0cp01706j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Water forms weak H-bonds with thenyl compounds, simultaneously retaining internal mobility in the dimer.
Collapse
Affiliation(s)
- Marcos Juanes
- Departamento de Química Física y Química Inorgánica and I.U. CINQUIMA
- Facultad de Ciencias
- Universidad de Valladolid, Paseo de Belén, 7
- 47011 Valladolid
- Spain
| | - Rizalina Tama Saragi
- Departamento de Química Física y Química Inorgánica and I.U. CINQUIMA
- Facultad de Ciencias
- Universidad de Valladolid, Paseo de Belén, 7
- 47011 Valladolid
- Spain
| | - Ruth Pinacho
- Departamento de Electrónica
- Escuela de Ingeniería de Telecomunicaciones
- Universidad de Valladolid
- Paseo de Belén, 15
- 47011 Valladolid
| | - José E. Rubio
- Departamento de Electrónica
- Escuela de Ingeniería de Telecomunicaciones
- Universidad de Valladolid
- Paseo de Belén, 15
- 47011 Valladolid
| | - Alberto Lesarri
- Departamento de Química Física y Química Inorgánica and I.U. CINQUIMA
- Facultad de Ciencias
- Universidad de Valladolid, Paseo de Belén, 7
- 47011 Valladolid
- Spain
| |
Collapse
|
47
|
Chand A, Biswal HS. Hydrogen Bonds with Chalcogens: Looking Beyond the Second Row of the Periodic Table. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00140-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Sarkar S, Monu, Bandyopadhyay B. Cooperative nature of the sulfur centered hydrogen bond: investigation of (H 2S) n (n = 2-4) clusters using an affordable yet accurate level of theory. Phys Chem Chem Phys 2019; 21:25439-25448. [PMID: 31712792 DOI: 10.1039/c9cp05326c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Existing studies have shown that appreciably high level quantum chemical calculations are required to reproduce experimental energetic and geometric features of a H2S dimer. This condition severely restricts any practical possibility of obtaining reliable results for higher order H2S clusters. We have shown here that the binding energies calculated at the CCSD(T)/CBS level with counterpoise corrected geometries calculated at the MP2/aug-cc-pV(Q+d)Z level of theory excellently match with the experimental results for the H2S dimer. Subsequently, the above mentioned levels of theory were used for trimers and tetramers. (H2S)n (n = 2-4) clusters were found to show cooperative strengthening of S-HS hydrogen bonds, which is clearly evident from the evolution of binding energies and hydrogen bond lengths, with increasing cluster size. Localized molecular orbital energy decomposition analyses have been carried out to understand how the contributions of various energy components modulate with the size of the clusters and what are their relative contributions towards the overall stabilization of the clusters. Natural bond orbital and atoms in molecules analyses were also carried out in order to look into the evolution of the electronic charge transfer and electron density topology with cluster size.
Collapse
Affiliation(s)
- Saptarshi Sarkar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| | - Monu
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| | - Biman Bandyopadhyay
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| |
Collapse
|
49
|
Wang D, Chopra P, Wategaonkar S, Fujii A. Electronic and Infrared Spectroscopy of Benzene-(H2S)n (n = 1 and 2): The Prototype of the SH-π Interaction. J Phys Chem A 2019; 123:7255-7260. [DOI: 10.1021/acs.jpca.9b02199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dandan Wang
- Department of Chemistry, Graduate school of Science, Tohoku University, Sendai 980-8578, Japan
| | - Pragya Chopra
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400 005, India
| | - Sanjay Wategaonkar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400 005, India
| | - Asuka Fujii
- Department of Chemistry, Graduate school of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
50
|
Bai ST, Bheeter CB, Reek JNH. Hydrogen Bond Directed ortho-Selective C-H Borylation of Secondary Aromatic Amides. Angew Chem Int Ed Engl 2019; 58:13039-13043. [PMID: 31237988 PMCID: PMC6772079 DOI: 10.1002/anie.201907366] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 02/03/2023]
Abstract
Reported is an iridium catalyst for ortho-selective C-H borylation of challenging secondary aromatic amide substrates, and the regioselectivity is controlled by hydrogen-bond interactions. The BAIPy-Ir catalyst forms three hydrogen bonds with the substrate during the crucial activation step, and allows ortho-C-H borylation with high selectivity. The catalyst displays unprecedented ortho selectivities for a wide variety of substrates that differ in electronic and steric properties, and the catalyst tolerates various functional groups. The regioselective C-H borylation catalyst is readily accessible and converts substrates on gram scale with high selectivity and conversion.
Collapse
Affiliation(s)
- Shao-Tao Bai
- Supramolecular and Homogeneous Catalysis Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Charles B Bheeter
- Supramolecular and Homogeneous Catalysis Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Joost N H Reek
- Supramolecular and Homogeneous Catalysis Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|