1
|
Medvedkov IA, Nikolayev AA, Yang Z, Goettl SJ, Mebel AM, Kaiser RI. Elucidating the chemical dynamics of the elementary reactions of the 1-propynyl radical (CH 3CC; X 2A 1) with 2-methylpropene ((CH 3) 2CCH 2; X 1A 1). Phys Chem Chem Phys 2024; 26:6448-6457. [PMID: 38319693 DOI: 10.1039/d3cp05872g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Exploiting the crossed molecular beam technique, we studied the reaction of the 1-propynyl radical (CH3CC; X2A1) with 2-methylpropene (isobutylene; (CH3)2CCH2; X1A1) at a collision energy of 38 ± 3 kJ mol-1. The experimental results along with ab initio and statistical calculations revealed that the reaction has no entrance barrier and proceeds via indirect scattering dynamics involving C7H11 intermediates with lifetimes longer than their rotation period(s). The reaction is initiated by the addition of the 1-propynyl radical with its radical center to the π-electron density at the C1 and/or C2 position in 2-methylpropene. Further, the C7H11 intermediate formed from the C1 addition either emits atomic hydrogen or undergoes isomerization via [1,2-H] shift from the CH3 or CH2 group prior to atomic hydrogen loss preferentially leading to 1,2,4-trimethylvinylacetylene (2-methylhex-2-en-4-yne) as the dominant product. The molecular structures of the collisional complexes promote hydrogen atom loss channels. RRKM results show that hydrogen elimination channels dominate in this reaction, with a branching ratio exceeding 70%. Since the reaction of the 1-propynyl radical with 2-methylpropene has no entrance barrier, is exoergic, and all transition states involved are located below the energy of the separated reactants, bimolecular collisions are feasible to form trimethylsubstituted 1,3-enyne (p1) via a single collision event even at temperatures as low as 10 K prevailing in cold molecular clouds such as G+0.693. The formation of trimethylsubstituted vinylacetylene could serve as the starting point of fundamental molecular mass growth processes leading to di- and trimethylsubstituted naphthalenes via the HAVA mechanism.
Collapse
Affiliation(s)
- Iakov A Medvedkov
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| | | | - Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| | - Shane J Goettl
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
2
|
Medvedkov IA, Nikolayev AA, He C, Yang Z, Mebel AM, Kaiser RI. One Collision-Two Substituents: Gas-Phase Preparation of Xylenes under Single-Collision Conditions. Angew Chem Int Ed Engl 2023:e202315147. [PMID: 38072833 DOI: 10.1002/anie.202315147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/21/2023]
Abstract
The fundamental reaction pathways to the simplest dialkylsubstituted aromatics-xylenes (C6 H4 (CH3 )2 )-in high-temperature combustion flames and in low-temperature extraterrestrial environments are still unknown, but critical to understand the chemistry and molecular mass growth processes in these extreme environments. Exploiting crossed molecular beam experiments augmented by state-of-the-art electronic structure and statistical calculations, this study uncovers a previously elusive, facile gas-phase synthesis of xylenes through an isomer-selective reaction of 1-propynyl (methylethynyl, CH3 CC) with 2-methyl-1,3-butadiene (isoprene, C5 H8 ). The reaction dynamics are driven by a barrierless addition of the radical to the diene moiety of 2-methyl-1,3-butadiene followed by extensive isomerization (hydrogen shifts, cyclization) prior to unimolecular decomposition accompanied by aromatization via atomic hydrogen loss. This overall exoergic reaction affords a preparation of xylenes not only in high-temperature environments such as in combustion flames and around circumstellar envelopes of carbon-rich Asymptotic Giant Branch (AGB) stars, but also in low-temperature cold molecular clouds (10 K) and in hydrocarbon-rich atmospheres of planets and their moons such as Triton and Titan. Our study established a hitherto unknown gas-phase route to xylenes and potentially more complex, disubstituted benzenes via a single collision event highlighting the significance of an alkyl-substituted ethynyl-mediated preparation of aromatic molecules in our Universe.
Collapse
Affiliation(s)
- Iakov A Medvedkov
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | | | - Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | - Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
3
|
Yang Z, Galimova GR, He C, Goettl SJ, Paul D, Lu W, Ahmed M, Mebel AM, Li X, Kaiser RI. Gas-phase formation of the resonantly stabilized 1-indenyl (C 9H 7•) radical in the interstellar medium. SCIENCE ADVANCES 2023; 9:eadi5060. [PMID: 37682989 PMCID: PMC10491290 DOI: 10.1126/sciadv.adi5060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
The 1-indenyl (C9H7•) radical, a prototype aromatic and resonantly stabilized free radical carrying a six- and a five-membered ring, has emerged as a fundamental molecular building block of nonplanar polycyclic aromatic hydrocarbons (PAHs) and carbonaceous nanostructures in deep space and combustion systems. However, the underlying formation mechanisms have remained elusive. Here, we reveal an unconventional low-temperature gas-phase formation of 1-indenyl via barrierless ring annulation involving reactions of atomic carbon [C(3P)] with styrene (C6H5C2H3) and propargyl (C3H3•) with phenyl (C6H5•). Macroscopic environments like molecular clouds act as natural low-temperature laboratories, where rapid molecular mass growth to 1-indenyl and subsequently complex PAHs involving vinyl side-chained aromatics and aryl radicals can occur. These reactions may account for the formation of PAHs and their derivatives in the interstellar medium and carbonaceous chondrites and could close the gap of timescales of their production and destruction in our carbonaceous universe.
Collapse
Affiliation(s)
- Zhenghai Yang
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
| | - Galiya R. Galimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Chao He
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
| | - Shane J. Goettl
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
| | - Dababrata Paul
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
| | - Wenchao Lu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Xiaohu Li
- Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, P. R. China
- Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, P. R. China
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
| |
Collapse
|
4
|
He C, Kaiser RI, Lu W, Ahmed M, Krasnoukhov VS, Pivovarov PS, Zagidullin MV, Azyazov VN, Morozov AN, Mebel AM. Unconventional gas-phase preparation of the prototype polycyclic aromatic hydrocarbon naphthalene (C 10H 8) via the reaction of benzyl (C 7H 7) and propargyl (C 3H 3) radicals coupled with hydrogen-atom assisted isomerization. Chem Sci 2023; 14:5369-5378. [PMID: 37234886 PMCID: PMC10208037 DOI: 10.1039/d3sc00911d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the interstellar medium and in meteorites such as Murchison and Allende and signify the missing link between resonantly stabilized free radicals and carbonaceous nanoparticles (soot particles, interstellar grains). However, the predicted lifetime of interstellar PAHs of some 108 years imply that PAHs should not exist in extraterrestrial environments suggesting that key mechanisms of their formation are elusive. Exploiting a microchemical reactor and coupling these data with computational fluid dynamics (CFD) simulations and kinetic modeling, we reveal through an isomer selective product detection that the reaction of the resonantly stabilized benzyl and the propargyl radicals synthesizes the simplest representative of PAHs - the 10π Hückel aromatic naphthalene (C10H8) molecule - via the novel Propargyl Addition-BenzAnnulation (PABA) mechanism. The gas-phase preparation of naphthalene affords a versatile concept of the reaction of combustion and astronomically abundant propargyl radicals with aromatic radicals carrying the radical center at the methylene moiety as a previously passed over source of aromatics in high temperature environments thus bringing us closer to an understanding of the aromatic universe we live in.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry, University of Hawai'i at Mānoa Honolulu HI 96822 USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Mānoa Honolulu HI 96822 USA
| | - Wenchao Lu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Vladislav S Krasnoukhov
- Lebedev Physical Institute Samara 443011 Russian Federation
- Samara National Research University Samara 443086 Russian Federation
| | - Pavel S Pivovarov
- Samara National Research University Samara 443086 Russian Federation
| | | | | | - Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University Miami Florida 33199 USA
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University Miami Florida 33199 USA
| |
Collapse
|
5
|
Li W, Zhao L, Kaiser RI. A unified reaction network on the formation of five-membered ringed polycyclic aromatic hydrocarbons (PAHs) and their role in ring expansion processes through radical-radical reactions. Phys Chem Chem Phys 2023; 25:4141-4150. [PMID: 36655590 DOI: 10.1039/d2cp05305e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Exploiting a chemical microreactor in combination with an isomer-selective product identification through fragment-free photoionization utilizing tunable vacuum ultraviolet (VUV) light in tandem with the detection of the ionized molecules by a high resolution reflection time-of-flight mass spectrometer (Re-TOF-MS), the present investigation reveals molecular mass growth processes to four distinct polycyclic aromatic hydrocarbons carrying two six- and one five-membered ring (C13H10): 3H-cyclopenta[a]naphthalene, 1H-cyclopenta[b]naphthalene, 1H-cyclopenta[a]naphthalene, and fluorene in the gas phase. Temperatures of 973 and 1023 K simulating conditions in combustion settings along with circumstellar envelopes of carbon-rich stars and planetary nebulae. These reactions highlight the importance of methyl-substituted aromatic reactants (biphenyl, naphthalene) which can be converted to the methylene (-CH2˙) motive by hydrogen abstraction or photolysis. Upon reaction with acetylene, methylene-substituted aromatics carrying a hydrogen atom at the ortho position of the ring can be then converted to cyclopentadiene-annulated aromatics thus providing a versatile pathway to five-membered ring aromatics at elevated temperatures.
Collapse
Affiliation(s)
- Wang Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China.
| | - Long Zhao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China. .,School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
6
|
Galimova GR, Mebel AM, Goettl SJ, Yang Z, Kaiser RI. A crossed molecular beams and computational study on the unusual reactivity of banana bonds of cyclopropane (c-C 3H 6; ) through insertion by ground state carbon atoms (C( 3P j)). Phys Chem Chem Phys 2022; 24:22453-22463. [PMID: 36102937 DOI: 10.1039/d2cp03293g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism and chemical dynamics of the reaction of ground electronic state atomic carbon C(3Pj) with cyclopropane c-C3H6 have been explored by combining crossed molecular beams experiments with electronic structure calculations of the pertinent triplet C4H6 potential energy surface and statistical computations of product branching ratios under single-collision conditions. The experimental findings suggest that the reaction proceeds via indirect scattering dynamics through triplet C4H6 reaction intermediate(s) leading to C4H5 product(s) plus atomic hydrogen via a tight exit transition state, with the overall reaction exoergicity evaluated as 231 ± 52 kJ mol-1. The calculations indicate that C(3Pj) can easily insert into one of the three equivalent C-C 'banana' bonds of cyclopropane overcoming a low barrier of only 2 kJ mol-1 following the formation of a van der Waals reactant complex stabilized by 15 kJ mol-1. The carbon atom insertion into one of the six C-H bonds is also feasible via a slightly higher barrier of 5 kJ mol-1. These results highlight an unusual reactivity of cyclopropane's banana C-C bonds, which behave more like unsaturated C-C bonds with a π-character than saturated σ C-C bonds, which are known to be generally unreactive toward the ground electronic state atomic carbon such as in ethane (C2H6). The statistical theory predicts the overall product branching ratios at the experimental collision energy as 50% for 1-butyn-4-yl, 33% for 1,3-butadien-2-yl, i-C4H5, and 11% for 1,3-butadien-1-yl, n-C4H5, with i-C4H5 (230 kJ mol-1 below the reactants) favored by the C-C insertion providing the best match with the experimentally observed reaction exoergicity. The C(3Pj) + c-C3H6 reaction is predicted to be a source of C4H5 radicals under the conditions where its low entrance barriers can be overcome, such as in planetary atmospheres or in circumstellar envelopes but not in cold molecular clouds. Both i- and n-C4H5 can further react with acetylene eventually producing the first aromatic ring and hence, the reaction of the atomic carbon with c-C3H6 can be considered as an initial step toward the formation of benzene.
Collapse
Affiliation(s)
- Galiya R Galimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Shane J Goettl
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
7
|
He C, Thomas AM, Dangi BB, Yang T, Kaiser RI, Lee HC, Sun BJ, Chang AHH. Formation of the Elusive Silylenemethyl Radical (HCSiH 2; X 2B 2) via the Unimolecular Decomposition of Triplet Silaethylene (H 2CSiH 2; a 3A″). J Phys Chem A 2022; 126:3347-3357. [PMID: 35584043 DOI: 10.1021/acs.jpca.2c01853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the formation of small organosilicon molecules─potential precursors to silicon-carbide dust grains ejected by dying carbon-rich asymptotic giant branch stars─in the gas phase via the reaction of atomic carbon (C) in its 3P electronic ground state with silane (SiH4; X1A1) using the crossed molecular beams technique. The reactants collided under single collision conditions at a collision energy of 13.0 ± 0.2 kJ mol-1, leading to the formation of the silylenemethyl radical (HCSiH2; X2B2) via the unimolecular decomposition of triplet silaethylene (H2CSiH2; a3A″). The silaethylene radical was formed via hydrogen migration of the triplet silylmethylene (HCSiH3; X3A″) radical, which in turn was identified as the initial collision complex accessed via the barrierless insertion of atomic carbon into the silicon-hydrogen bond of silane. Our results mark the first observation of the silylenemethyl radical, where previously only its thermodynamically more stable methylsilylidyne (CH3Si; X2A″) and methylenesilyl (CH2SiH; X2A') isomers were observed in low-temperature matrices. Considering the abundance of silane and the availability of atomic carbon in carbon-rich circumstellar environments, our results suggest that future astrochemical models should be updated to include contributions from small saturated organosilicon molecules as potential precursors to pure gaseous silicon-carbides and ultimately to silicon-carbide dust.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Beni B Dangi
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Tao Yang
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Huan-Cheng Lee
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| | - Bing-Jian Sun
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| | - Agnes H H Chang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| |
Collapse
|
8
|
He C, Fujioka K, Nikolayev AA, Zhao L, Doddipatla S, Azyazov VN, Mebel AM, Sun R, Kaiser RI. A chemical dynamics study of the reaction of the methylidyne radical (CH, X 2Π) with dimethylacetylene (CH 3CCCH 3, X 1A 1g). Phys Chem Chem Phys 2021; 24:578-593. [PMID: 34908056 DOI: 10.1039/d1cp04443e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The gas-phase reaction of the methylidyne (CH; X2Π) radical with dimethylacetylene (CH3CCCH3; X1A1g) was studied at a collision energy of 20.6 kJ mol-1 under single collision conditions with experimental results merged with ab initio calculations of the potential energy surface (PES) and ab initio molecule dynamics (AIMD) simulations. The crossed molecular beam experiment reveals that the reaction proceeds barrierless via indirect scattering dynamics through long-lived C5H7 reaction intermediate(s) ultimately dissociating to C5H6 isomers along with atomic hydrogen with atomic hydrogen predominantly released from the methyl groups as verified by replacing the methylidyne with the D1-methylidyne reactant. AIMD simulations reveal that the reaction dynamics are statistical leading predominantly to p28 (1-methyl-3-methylenecyclopropene, 13%) and p8 (1-penten-3-yne, 81%) plus atomic hydrogen with a significant amount of available energy being channeled into the internal excitation of the polyatomic reaction products. The dynamics are controlled by addition to the carbon-carbon triple bond with the reaction intermediates eventually eliminating a hydrogen atom from the methyl groups of the dimethylacetylene reactant forming 1-methyl-3-methylenecyclopropene (p28). The dominating pathways reveal an unexpected insertion of methylidyne into one of the six carbon-hydrogen single bonds of the methyl groups of dimethylacetylene leading to the acyclic intermediate, which then decomposes to 1-penten-3-yne (p8). Therefore, the methyl groups of dimethylacetylene effectively 'screen' the carbon-carbon triple bond from being attacked by addition thus directing the dynamics to an insertion process as seen exclusively in the reaction of methylidyne with ethane (C2H6) forming propylene (CH3C2H3). Therefore, driven by the screening of the triple bond, one propynyl moiety (CH3CC) acts in four out of five trajectories as a spectator thus driving an unexpected, but dominating chemistry in analogy to the methylidyne - ethane system.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Kazuumi Fujioka
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Anatoliy A Nikolayev
- Lebedev Physical Institute, Samara 443011, Russia.,Samara National Research University, Samara 443086, Russia
| | - Long Zhao
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Srinivas Doddipatla
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Valeriy N Azyazov
- Lebedev Physical Institute, Samara 443011, Russia.,Samara National Research University, Samara 443086, Russia
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA.
| | - Rui Sun
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| |
Collapse
|
9
|
Yang Z, Sun BJ, He C, Fatimah S, Chang AHH, Kaiser RI. Gas Phase Preparation of the Elusive Monobridged Ge(µ -H)GeH Molecule via Non-Adiabatic Reaction Dynamics. Chemistry 2021; 28:e202103999. [PMID: 34929046 DOI: 10.1002/chem.202103999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/06/2022]
Abstract
The hitherto elusive monobridged Ge( µ -H)GeH (X 1 A') molecule was prepared in gas phase through bimolecular reaction of atomic germanium (Ge) with germane (GeH 4 ). Merged with electronic structure calculations, this reaction was revealed to commence on the triplet surface with the formation of a van der Waals complex, followed by insertion of germanium into a germanium-hydrogen bond via a submerged barrier forming the triplet digermanylidene intermediate (HGeGeH 3 ); the latter underwent intersystem crossing from the triplet to singlet surface. On the singlet surface, HGeGeH 3 predominantly isomerized via two successive hydrogen shifts prior to unimolecular decomposition to Ge( µ -H)GeH isomer, which is in equilibrium with the vinylidene-type (H 2 GeGe) and di-bridged (Ge( µ -H 2 )Ge) isomers. This reaction leads to the formation of the cyclic dinuclear germanium molecules, which do not exist on the isovalent C 2 H 2 surface, deepening our understanding of the role of nonadiabatic reaction dynamics in preparing non-classical, hydrogen-bridged isomers carrying main group XIV elements.
Collapse
Affiliation(s)
- Zhenghai Yang
- University of Hawai'i at Manoa, Chemistry, 2545 McCarthy Mall, Honolulu, 96822, Honolulu, UNITED STATES
| | | | - Chao He
- University of Hawai'i at Manoa, Chemistry, UNITED STATES
| | | | | | - Ralf I Kaiser
- University of Hawaii at Manoa, 2545 McCarthy Mall, 96822, Honolulu, UNITED STATES
| |
Collapse
|
10
|
He C, Goettl SJ, Yang Z, Doddipatla S, Kaiser RI, Silva MX, Galvão BRL. Directed gas-phase preparation of the elusive phosphinosilylidyne (SiPH 2, X 2A'') and cis/trans phosphinidenesilyl (HSiPH; X 2A') radicals under single-collision conditions. Phys Chem Chem Phys 2021; 23:18506-18516. [PMID: 34612389 DOI: 10.1039/d1cp02812j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of the D1-silylidyne radical (SiD; X2Π) with phosphine (PH3; X1A1) was conducted in a crossed molecular beams machine under single collision conditions. Merging of the experimental results with ab initio electronic structure and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) calculations indicates that the reaction is initiated by the barrierless formation of a van der Waals complex (i0) as well as intermediate (i1) formed via the barrierless addition of the SiD radical with its silicon atom to the non-bonding electron pair of phosphorus of the phosphine. Hydrogen shifts from the phosphorous atom to the adjacent silicon atom yield intermediates i2a, i2b, i3; unimolecular decomposition of these intermediates leads eventually to the formation of trans/cis-phosphinidenesilyl (HSiPH, p2/p4) and phosphinosilylidyne (SiPH2, p3) via hydrogen deuteride (HD) loss (experiment: 80 ± 11%, RRKM: 68.7%) and d-trans/cis-phosphinidenesilyl (DSiPH, p2'/p4') plus molecular hydrogen (H2) (experiment: 20 ± 7%, RRKM: 31.3%) through indirect scattering dynamics via tight exit transition states. Overall, the study reveals branching ratios of p2/p4/p2'/p4' (trans/cis HSiPH/DSiPH) to p3 (SiPH2) of close to 4 : 1. The present study sheds light on the complex reaction dynamics of the silicon and phosphorous systems involving multiple atomic hydrogen migrations and tight exit transition states, thus opening up a versatile path to access the previously elusive phosphinidenesilyl and phosphinosilylidyne doublet radicals, which represent potential targets of future astronomical searches toward cold molecular clouds (TMC-1), star forming regions (Sgr(B2)), and circumstellar envelopes of carbon rich stars (IRC + 10216).
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Yang Z, He C, Goettl S, Kaiser RI. Reaction Dynamics Study of the Molecular Hydrogen Loss Channel in the Elementary Reactions of Ground-State Silicon Atoms (Si( 3P)) With 1- and 2-Methyl-1,3-Butadiene (C 5H 8). J Phys Chem A 2021; 125:5040-5047. [PMID: 34096290 DOI: 10.1021/acs.jpca.1c03023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bimolecular gas-phase reactions involving ground-state atomic silicon (Si; 3P) and 1- and 2-methyl-1,3-butadiene were studied via crossed molecular beam experiments. Our data revealed indirect scattering dynamics through long-lived SiC5H8 collision complex(es) along with molecular hydrogen loss pathways, leading to facile formation of SiC5H6 isomer(s). We propose that the reactions of silicon with 1- and 2-methyl-1,3-butadiene possess reaction dynamics in an analogy to the silicon-1,3-butadiene system. This leads to cyclic methyl-substituted 2-methylene-1-silacyclobutene isomers via nonadiabatic reaction dynamics through intersystem crossing (ISC) from the triplet to the singlet surface in overall exoergic reactions through tight exit transition states and molecular hydrogen loss. Our study also suggests that the methyl group-although a spectator from the chemical viewpoint-can influence the disposal of the angular momentum into the rotational excitation of the final product.
Collapse
Affiliation(s)
- Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Shane Goettl
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
12
|
Yang Z, Sun BJ, He C, Goettl S, Lin YT, Chang AHH, Kaiser RI. Combined Experimental and Computational Study on the Reaction Dynamics of the D1-Silylidyne(SiD) – Silane (SiH4) System. J Phys Chem A 2021; 125:2472-2479. [DOI: 10.1021/acs.jpca.0c11538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhenghai Yang
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| | - Bing-Jian Sun
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| | - Chao He
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| | - Shane Goettl
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| | - Yu-Ting Lin
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| | - Agnes H. H. Chang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
13
|
Izadi ME, Bal KM, Maghari A, Neyts EC. Reaction mechanisms of C( 3P J) and C +( 2P J) with benzene in the interstellar medium from quantum mechanical molecular dynamics simulations. Phys Chem Chem Phys 2021; 23:4205-4216. [PMID: 33586718 DOI: 10.1039/d0cp04542j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
While spectroscopic data on small hydrocarbons in interstellar media in combination with crossed molecular beam (CMB) experiments have provided a wealth of information on astrochemically relevant species, much of the underlying mechanistic pathways of their formation remain elusive. Therefore, in this work, the chemical reaction mechanisms of C(3PJ) + C6H6 and C+(2P) + C6H6 systems using the quantum mechanical molecular dynamics (QMMD) technique at the PBE0-D3(BJ) level of theory is investigated, mimicking a CMB experiment. Both the dynamics of the reactions as well as the electronic structure for the purpose of the reaction network are evaluated. The method is validated for the first reaction by comparison to the available experimental data. The reaction scheme for the C(3PJ) + C6H6 system covers the literature data, e.g. the major products are the 1,2-didehydrocycloheptatrienyl radical (C7H5) and benzocyclopropenyl radical (C6H5-CH), and it reveals the existence of less common pathways for the first time. The chemistry of the C+(2PJ) + C6H6 system is found to be much richer, and we have found that this is because of more exothermic reactions in this system in comparison to those in the C(3PJ) + C6H6 system. Moreover, using the QMMD simulation, a number of reaction paths have been revealed that produce three distinct classes of reaction products with different ring sizes. All in all, at all the collision energies and orientations, the major product is the heptagon molecular ion for the ionic system. It is also revealed that the collision orientation has a dominant effect on the reaction products in both systems, while the collision energy mostly affects the charged system. These simulations both prove the applicability of this approach to simulate crossed molecular beams, and provide fundamental information on reactions relevant for the interstellar medium.
Collapse
Affiliation(s)
- Mohammad Ebrahim Izadi
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Kristof M Bal
- Department of Chemistry, Research Group PLASMANT, NANOlab Center of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Ali Maghari
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Erik C Neyts
- Department of Chemistry, Research Group PLASMANT, NANOlab Center of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| |
Collapse
|
14
|
Yang Z, Doddipatla S, Kaiser RI, Krasnoukhov VS, Azyazov VN, Mebel AM. Directed Gas Phase Formation of the Elusive Silylgermylidyne Radical (H 3 SiGe, X 2 A''). Chemphyschem 2021; 22:184-191. [PMID: 33245830 DOI: 10.1002/cphc.202000913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Indexed: 11/11/2022]
Abstract
The previously unknown silylgermylidyne radical (H3 SiGe; X2 A'') was prepared via the bimolecular gas phase reaction of ground state silylidyne radicals (SiH; X2 Π) with germane (GeH4 ; X1 A1 ) under single collision conditions in crossed molecular beams experiments. This reaction begins with the formation of a van der Waals complex followed by insertion of silylidyne into a germanium-hydrogen bond forming the germylsilyl radical (H3 GeSiH2 ). A hydrogen migration isomerizes this intermediate to the silylgermyl radical (H2 GeSiH3 ), which undergoes a hydrogen shift to an exotic, hydrogen-bridged germylidynesilane intermediate (H3 Si(μ-H)GeH); this species emits molecular hydrogen forming the silylgermylidyne radical (H3 SiGe). Our study offers a remarkable glance at the complex reaction dynamics and inherent isomerization processes of the silicon-germanium system, which are quite distinct from those of the isovalent hydrocarbon system (ethyl radical; C2 H5 ) eventually affording detailed insights into an exotic chemistry and intriguing chemical bonding of silicon-germanium species at the microscopic level exploiting crossed molecular beams.
Collapse
Affiliation(s)
- Zhenghai Yang
- Department of Chemistry, University of Hawaii, Honolulu, HI, 96822, USA
| | | | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii, Honolulu, HI, 96822, USA
| | - Vladislav S Krasnoukhov
- Samara National Research University, Samara 443086 and Lebedev Physical Institute, Samara, 443011, Russian Federation
| | - Valeriy N Azyazov
- Samara National Research University, Samara 443086 and Lebedev Physical Institute, Samara, 443011, Russian Federation
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
15
|
He C, Nikolayev AA, Zhao L, Thomas AM, Doddipatla S, Galimova GR, Azyazov VN, Mebel AM, Kaiser RI. Gas-Phase Formation of C 5H 6 Isomers via the Crossed Molecular Beam Reaction of the Methylidyne Radical (CH; X 2Π) with 1,2-Butadiene (CH 3CHCCH 2; X 1A'). J Phys Chem A 2021; 125:126-138. [PMID: 33397109 DOI: 10.1021/acs.jpca.0c08731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The bimolecular gas-phase reaction of the methylidyne radical (CH; X2Π) with 1,2-butadiene (CH2CCHCH3; X1A') was investigated at a collision energy of 20.6 kJ mol-1 under single collision conditions. Combining our laboratory data with high-level electronic structure calculations, we reveal that this bimolecular reaction proceeds through the barrierless addition of the methylidyne radical to the carbon-carbon double bonds of 1,2-butadiene leading to doublet C5H7 intermediates. These collision adducts undergo a nonstatistical unimolecular decomposition through atomic hydrogen elimination to at least the cyclic 1-vinyl-cyclopropene (p5/p26), 1-methyl-3-methylenecyclopropene (p28), and 1,2-bis(methylene)cyclopropane (p29) in overall exoergic reactions. The barrierless nature of this bimolecular reaction suggests that these cyclic C5H6 isomers might be viable targets to be searched for in cold molecular clouds like TMC-1.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | | | - Long Zhao
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Srinivas Doddipatla
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Galiya R Galimova
- Samara National Research University, Samara 443086, Russian Federation.,Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Valeriy N Azyazov
- Samara National Research University, Samara 443086, Russian Federation.,Lebedev Physical Institute, Samara 443011, Russian Federation
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
16
|
Yang Z, Doddipatla S, He C, Krasnoukhov VS, Azyazov VN, Mebel AM, Kaiser RI. Directed Gas Phase Formation of Silene (H 2 SiCH 2 ). Chemistry 2020; 26:13584-13589. [PMID: 32500564 DOI: 10.1002/chem.202002359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 11/10/2022]
Abstract
The silene molecule (H2 SiCH2 ; X1 A1 ) has been synthesized under single collision conditions via the bimolecular gas phase reaction of ground state methylidyne radicals (CH) with silane (SiH4 ). Exploiting crossed molecular beams experiments augmented by high-level electronic structure calculations, the elementary reaction commenced on the doublet surface through a barrierless insertion of the methylidyne radical into a silicon-hydrogen bond forming the silylmethyl (CH2 SiH3 ; X2 A') complex followed by hydrogen migration to the methylsilyl radical (SiH2 CH3 ; X2 A'). Both silylmethyl and methylsilyl intermediates undergo unimolecular hydrogen loss to silene (H2 SiCH2 ; X1 A1 ). The exploration of the elementary reaction of methylidyne with silane delivers a unique view at the widely uncharted reaction dynamics and isomerization processes of the carbon-silicon system in the gas phase, which are noticeably different from those of the isovalent carbon system thus contributing to our knowledge on carbon silicon bond couplings at the molecular level.
Collapse
Affiliation(s)
- Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Srinivas Doddipatla
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | | | - Valeriy N Azyazov
- Samara National Research University, Samara, 443086, Russian Federation.,Lebedev Physical Institute, Samara, 443011, Russian Federation
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
17
|
Yang Z, He C, Doddipatla S, Krasnoukhov VS, Azyazov VN, Mebel AM, Kaiser RI. Gas Phase Formation of Methylgermylene (HGeCH3). Chemphyschem 2020; 21:1898-1904. [PMID: 32596990 DOI: 10.1002/cphc.202000392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/14/2020] [Indexed: 11/11/2022]
Abstract
The methylgermylene species (HGeCH3 ; X1 A') has been synthesized via the bimolecular gas phase reaction of ground state methylidyne radicals (CH) with germane (GeH4 ) under single collision conditions in crossed molecular beams experiments. Augmented by electronic structure calculations, this elementary reaction was found to proceed through barrierless insertion of the methylidyne radical in one of the four germanium-hydrogen bonds on the doublet potential energy surface yielding the germylmethyl (CH2 GeH3 ; X2 A') collision complex. This insertion is followed by a hydrogen shift from germanium to carbon and unimolecular decomposition of the methylgermyl (GeH2 CH3 ; X2 A') intermediate by atomic hydrogen elimination leading to singlet methylgermylene (HGeCH3 ; X1 A'). Our investigation provides a glimpse at the largely unknown reaction dynamics and isomerization processes of the carbon-germanium system, which are quite distinct from those of the isovalent carbon system thus providing insights into the intriguing chemical bonding of organo germanium species on the most fundamental, microscopic level.
Collapse
Affiliation(s)
- Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Srinivas Doddipatla
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | | | - Valeriy N Azyazov
- Samara National Research University, Samara, 443086, Russian Federation.,Lebedev Physical Institute, Samara, 443011, Russian Federation
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
18
|
He C, Thomas AM, Galimova GR, Mebel AM, Kaiser RI. Gas-Phase Formation of 1-Methylcyclopropene and 3-Methylcyclopropene via the Reaction of the Methylidyne Radical (CH; X 2Π) with Propylene (CH 3CHCH 2; X 1A'). J Phys Chem A 2019; 123:10543-10555. [PMID: 31718184 DOI: 10.1021/acs.jpca.9b09815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crossed molecular beam reactions of the methylidyne radical (CH; X2Π) with propylene (CH3CHCH2; X1A') along with (partially) substituted reactants were conducted at collision energies of 19.3 kJ mol-1. Combining our experimental data with ab initio electronic structure and statistical calculations, the methylidyne radical is revealed to add barrierlessly to the carbon-carbon double bond of propylene reactant resulting in a cyclic doublet C4H7 intermediate with a lifetime longer than its rotation period. These adducts undergo a nonstatistical unimolecular decomposition via atomic hydrogen loss through tight exit transition states forming the cyclic products 1-methylcyclopropene and 3-methylcyclopropene with overall reaction exoergicities of 168 ± 25 kJ mol-1. These C4H6 isomers are predicted to exist even in low-temperature environments such as cold molecular clouds like TMC-1, since the reaction is barrierless and exoergic, all transition states are below the energy of the separated reactants, and both the methylidyne radical (CH; X2Π) and propylene reactant were detected in cold molecular clouds such as TMC-1.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| | - Aaron M Thomas
- Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| | - Galiya R Galimova
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States.,Samara National Research University , Samara 443086 , Russia
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Ralf I Kaiser
- Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| |
Collapse
|
19
|
Thomas AM, Zhao L, He C, Galimova GR, Mebel AM, Kaiser RI. Directed Gas‐Phase Synthesis of Triafulvene under Single‐Collision Conditions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aaron M. Thomas
- Department of Chemistry University of Hawai'i at Manoa Honolulu HI 96822 USA
| | - Long Zhao
- Department of Chemistry University of Hawai'i at Manoa Honolulu HI 96822 USA
| | - Chao He
- Department of Chemistry University of Hawai'i at Manoa Honolulu HI 96822 USA
| | - Galiya R. Galimova
- Department of Chemistry and Biochemistry Florida International University Miami FL 33199 USA
- Samara National Research University Samara 443086 Russia
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry Florida International University Miami FL 33199 USA
| | - Ralf I. Kaiser
- Department of Chemistry University of Hawai'i at Manoa Honolulu HI 96822 USA
| |
Collapse
|
20
|
Thomas AM, Zhao L, He C, Galimova GR, Mebel AM, Kaiser RI. Directed Gas-Phase Synthesis of Triafulvene under Single-Collision Conditions. Angew Chem Int Ed Engl 2019; 58:15488-15495. [PMID: 31368202 DOI: 10.1002/anie.201908039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Indexed: 11/09/2022]
Abstract
The triafulvene molecule (c-C4 H4 )-the simplest representative of the fulvene family-has been synthesized for the first time in the gas phase through the reaction of the methylidyne radical (CH) with methylacetylene (CH3 CCH) and allene (H2 CCCH2 ) under single-collision conditions. The experimental and computational data suggest triafulvene is formed by the barrierless cycloaddition of the methylidyne radical to the π-electron density of either C3 H4 isomer followed by unimolecular decomposition through elimination of atomic hydrogen from the CH3 or CH2 groups of the reactants. The dipole moment of triafulvene of 1.90 D suggests that this molecule could represent a critical tracer of microwave-inactive allene in cold molecular clouds, thus defining constraints on the largely elusive hydrocarbon chemistry in low-temperature interstellar environments, such as that of the Taurus Molecular Cloud 1 (TMC-1).
Collapse
Affiliation(s)
- Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Long Zhao
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Galiya R Galimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA.,Samara National Research University, Samara, 443086, Russia
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
21
|
Krechkivska O, Wilcox CM, Nauta K, Kable SH, Schmidt TW. Quantum-Induced Symmetry Breaking in the Deuterated Dihydroanthracenyl Radical. J Phys Chem A 2019; 123:6711-6719. [DOI: 10.1021/acs.jpca.9b04561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olha Krechkivska
- School of Chemistry, University of New South Wales Sydney, NSW 2052, Australia
| | - Callan M. Wilcox
- School of Chemistry, University of New South Wales Sydney, NSW 2052, Australia
| | - Klaas Nauta
- School of Chemistry, University of New South Wales Sydney, NSW 2052, Australia
| | - Scott H. Kable
- School of Chemistry, University of New South Wales Sydney, NSW 2052, Australia
| | - Timothy W. Schmidt
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of New South Wales Sydney, NSW 2052, Australia
| |
Collapse
|
22
|
Fioroni M, Savage RE, DeYonker NJ. On the formation of phosphorous polycyclic aromatics hydrocarbons (PAPHs) in astrophysical environments. Phys Chem Chem Phys 2019; 21:8015-8021. [PMID: 30931458 DOI: 10.1039/c9cp00547a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of phosphorous-containing polycyclic aromatic hydrocarbons (PAPHs) in astrophysical contexts is proposed and analyzed by means of computational methods [B3LYP-D3BJ/ma-def2-TZVPP, MP2-F12, CCSD-F12b and CCSD(T)-F12b levels of theory]. A "bottom-up" approach based on a radical-neutral reaction scheme between acetylene (C2H2) and the CP radical was used investigating: (a) the synthesis of the first PAPH (C5H5P) "phosphinine"; (b) PAPH growth by addition of C2H2 to the C5H4P radical; (c) PAPH synthesis by addition reactions of one CP radical and nC2H2 to a neutral PAH. Results show: (I) the formation of the phosphinine radical has a strong thermodynamic tendency (-133.3 kcal mol-1) and kinetic barriers ≤5.4 kcal mol-1; (II) PAPH growth by nC2H2 addition on the radical phosphinine easily and exothermically produces radicals (1a- or 1-phospha-naphtalenes with kinetic barriers ≤7.1 kcal mol-1 and reaction free energies ≤-102.5 kcal mol-1); (III) the addition of a single CP + nC2H2 to a neutral benzene generates a complex chemistry where the main product is 2-phospha-naphtalene; (IV) because of the CP radical character, its barrierless addition to a PAH produces a resonant stabilized PAPH, becoming excellent candidates for addition reactions with neutral or radical hydrocarbons and PAHs; (V) the same energy trend between all four levels of theory continues a well-calibrated computational protocol to analyze complex organic reactions with astrochemical interest using electronic structure theory.
Collapse
Affiliation(s)
- Marco Fioroni
- 213 Smith Chemistry Building, The University of Memphis, Memphis, 38152, TN, USA.
| | | | | |
Collapse
|
23
|
Abplanalp MJ, Góbi S, Kaiser RI. On the formation and the isomer specific detection of methylacetylene (CH 3CCH), propene (CH 3CHCH 2), cyclopropane (c-C 3H 6), vinylacetylene (CH 2CHCCH), and 1,3-butadiene (CH 2CHCHCH 2) from interstellar methane ice analogues. Phys Chem Chem Phys 2019; 21:5378-5393. [PMID: 30221272 DOI: 10.1039/c8cp03921f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pure methane (CH4) ices processed by energetic electrons under ultra-high vacuum conditions to simulate secondary electrons formed via galactic cosmic rays (GCRs) penetrating interstellar ice mantles have been shown to produce an array of complex hydrocarbons with the general formulae: CnH2n+2 (n = 4-8), CnH2n (n = 3-9), CnH2n-2 (n = 3-9), CnH2n-4 (n = 4-9), and CnH2n-6 (n = 6-7). By monitoring the in situ chemical evolution of the ice combined with temperature programmed desorption (TPD) studies and tunable single photon ionization coupled to a reflectron time-of-flight mass spectrometer, specific isomers of C3H4, C3H6, C4H4, and C4H6 were probed. These experiments confirmed the synthesis of methylacetylene (CH3CCH), propene (CH3CHCH2), cyclopropane (c-C3H6), vinylacetylene (CH2CHCCH), 1-butyne (HCCC2H5), 2-butyne (CH3CCCH3), 1,2-butadiene (H2CCCH(CH3)), and 1,3-butadiene (CH2CHCHCH2) with yields of 2.17 ± 0.95 × 10-4, 3.7 ± 1.5 × 10-3, 1.23 ± 0.77 × 10-4, 1.28 ± 0.65 × 10-4, 4.01 ± 1.98 × 10-5, 1.97 ± 0.98 × 10-4, 1.90 ± 0.84 × 10-5, and 1.41 ± 0.72 × 10-4 molecules eV-1, respectively. Mechanistic studies exploring the formation routes of methylacetylene, propene, and vinylacetylene were also conducted, and revealed the additional formation of the 1,2,3-butatriene isomer. Several of the above isomers, methylacetylene, propene, vinylacetylene, and 1,3-butadiene, have repeatedly been shown to be important precursors in the formation of polycyclic aromatic hydrocarbons (PAHs), but until now their interstellar synthesis has remained elusive.
Collapse
Affiliation(s)
- Matthew J Abplanalp
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
24
|
Visser B, Beck M, Bornhauser P, Knopp G, van Bokhoven JA, Radi P, Gourlaouen C, Marquardt R. New experimental and theoretical assessment of the dissociation energy of C2. Mol Phys 2019. [DOI: 10.1080/00268976.2018.1564849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Martin Beck
- Paul Scherrer Institute, Villigen, Switzerland
| | | | | | - Jeroen Anton van Bokhoven
- Paul Scherrer Institute, Villigen, Switzerland
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Peter Radi
- Paul Scherrer Institute, Villigen, Switzerland
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique – Institut de Chimie – UMR 7177 CNRS/Unistra, Université de Strasbourg, Strasbourg, France
| | - Roberto Marquardt
- Laboratoire de Chimie Quantique – Institut de Chimie – UMR 7177 CNRS/Unistra, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
25
|
Menon A, Dreyer JAH, Martin JW, Akroyd J, Robertson J, Kraft M. Optical band gap of cross-linked, curved, and radical polyaromatic hydrocarbons. Phys Chem Chem Phys 2019; 21:16240-16251. [DOI: 10.1039/c9cp02363a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The impact of cross-linking, curvature, and radical character on the optical band gap of polyaromatic hydrocarbons has been investigated.
Collapse
Affiliation(s)
- Angiras Menon
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge CB3 0AS
- UK
- Cambridge Centre for Advanced Research and Education in Singapore (CARES)
| | - Jochen A. H. Dreyer
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge CB3 0AS
- UK
| | - Jacob W. Martin
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge CB3 0AS
- UK
- Cambridge Centre for Advanced Research and Education in Singapore (CARES)
| | - Jethro Akroyd
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge CB3 0AS
- UK
| | - John Robertson
- Department of Engineering
- University of Cambridge
- Cambridge CB3 0FA
- UK
| | - Markus Kraft
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge CB3 0AS
- UK
- Cambridge Centre for Advanced Research and Education in Singapore (CARES)
| |
Collapse
|
26
|
Thomas AM, Lucas M, Zhao L, Liddiard J, Kaiser RI, Mebel AM. A combined crossed molecular beams and computational study on the formation of distinct resonantly stabilized C 5H 3 radicals via chemically activated C 5H 4 and C 6H 6 intermediates. Phys Chem Chem Phys 2018. [PMID: 29537029 DOI: 10.1039/c8cp00357b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crossed molecular beams technique was utilized to explore the formation of three isomers of resonantly stabilized (C5H3) radicals along with their d2-substituted counterparts via the bimolecular reactions of singlet/triplet dicarbon [C2(X1Σ+g/a3Πu)] with methylacetylene [CH3CCH(X1A1)], d3-methylacetylene [CD3CCH(X1A1)], and 1-butyne [C2H5CCH(X1A')] at collision energies up to 26 kJ mol-1via chemically activated singlet/triplet C5H4/C5D3H and C6H6 intermediates. These studies exploit a newly developed supersonic dicarbon [C2(X1Σ+g/a3Πu)] beam generated via photolysis of tetrachloroethylene [C2Cl4(X1Ag)] by excluding interference from carbon atoms, which represent the dominating (interfering) species in ablation-based dicarbon sources. We evaluated the performance of the dicarbon [C2(X1Σ+g/a3Πu)] beam in reactions with methylacetylene [CH3CCH(X1A1)] and d3-methylacetylene [CD3CCH(X1A1)]; the investigations demonstrate that the reaction dynamics match previous studies in our laboratory utilizing ablation-based dicarbon sources involving the synthesis of 1,4-pentadiynyl-3 [HCCCHCCH(X2B1)] and 2,4-pentadiynyl-1 [H2CCCCCH(X2B1)] radicals via hydrogen (deuterium) atom elimination. Considering the C2(X1Σ+g/a3Πu)-1-butyne [C2H5CCH(X1A')] reaction, the hitherto elusive methyl-loss pathway was detected. This channel forms the previously unknown resonantly stabilized penta-1-yn-3,4-dienyl-1 [H2CCCHCC(X2A)] radical along with the methyl radical [CH3(X2A2'')] and is open exclusively on the triplet surface with an overall reaction energy of -86 ± 10 kJ mol-1. The preferred reaction pathways proceed first by barrierless addition of triplet dicarbon to the π-electronic system of 1-butyne, either to both acetylenic carbon atoms or to the sterically more accessible carbon atom, to form the methyl-bearing triplet C6H6 intermediates [i41b] and [i81b], respectively, with the latter decomposing via a tight exit transition state to penta-1-yn-3,4-dienyl-1 [(H2CCCHCC(X2A)] plus the methyl radical [CH3(X2A2'')]. The successful unraveling of this methyl-loss channel - through collaborative experimental and computational efforts - underscores the viability of the photolytically generated dicarbon beam as an unprecedented tool to access reaction dynamics underlying the formation of resonantly stabilized free radicals (RSFR) that are vital to molecular mass growth processes that ultimately lead to polycyclic aromatic hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Lucas M, Thomas AM, Kaiser RI, Bashkirov EK, Azyazov VN, Mebel AM. Combined Experimental and Computational Investigation of the Elementary Reaction of Ground State Atomic Carbon (C; 3Pj) with Pyridine (C5H5N; X1A1) via Ring Expansion and Ring Degradation Pathways. J Phys Chem A 2018. [DOI: 10.1021/acs.jpca.8b00756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael Lucas
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| | - Aaron M. Thomas
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| | | | | | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Samara University, Samara, 443086, Russia
| |
Collapse
|
28
|
Lucas M, Thomas AM, Zhao L, Kaiser RI, Kim GS, Mebel AM. Gas-Phase Synthesis of the Elusive Cyclooctatetraenyl Radical (C 8 H 7 ) via Triplet Aromatic Cyclooctatetraene (C 8 H 8 ) and Non-Aromatic Cyclooctatriene (C 8 H 8 ) Intermediates. Angew Chem Int Ed Engl 2017; 56:13655-13660. [PMID: 28887833 DOI: 10.1002/anie.201706861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Indexed: 11/10/2022]
Abstract
The 1,2,4,7-cyclooctatetraenyl radical (C8 H7 ) has been synthesized for the very first time via the bimolecular gas-phase reaction of ground-state carbon atoms with 1,3,5-cycloheptatriene (C7 H8 ) on the triplet surface under single-collision conditions. The barrier-less route to the cyclic 1,2,4,7-cyclooctatetraenyl radical accesses exotic reaction intermediates on the triplet surface, which cannot be synthesized via classical organic chemistry methods: the triplet non-aromatic 2,4,6-cyclooctatriene (C8 H8 ) and the triplet aromatic 1,3,5,7-cyclooctatetraene (C8 H8 ). Our approach provides a clean gas-phase synthesis of this hitherto elusive cyclic radical species 1,2,4,7-cyclooctatetraenyl via a single-collision event and opens up a versatile, unconventional path to access this previously largely obscure class of cyclooctatetraenyl radicals, which have been impossible to access through classical synthetic methods.
Collapse
Affiliation(s)
- Michael Lucas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Long Zhao
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Gap-Sue Kim
- Dharma College, Dongguk University, Jung-gu, Seoul, 04620, Korea
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA.,Samara National Research University, Samara, 443086, Russian Federation
| |
Collapse
|
29
|
Lucas M, Thomas AM, Zhao L, Kaiser RI, Kim G, Mebel AM. Gas‐Phase Synthesis of the Elusive Cyclooctatetraenyl Radical (C
8
H
7
) via Triplet Aromatic Cyclooctatetraene (C
8
H
8
) and Non‐Aromatic Cyclooctatriene (C
8
H
8
) Intermediates. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michael Lucas
- Department of Chemistry University of Hawai'i at Manoa Honolulu HI 96822 USA
| | - Aaron M. Thomas
- Department of Chemistry University of Hawai'i at Manoa Honolulu HI 96822 USA
| | - Long Zhao
- Department of Chemistry University of Hawai'i at Manoa Honolulu HI 96822 USA
| | - Ralf I. Kaiser
- Department of Chemistry University of Hawai'i at Manoa Honolulu HI 96822 USA
| | - Gap‐Sue Kim
- Dharma College Dongguk University Jung-gu Seoul 04620 Korea
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry Florida International University Miami FL 33199 USA
- Samara National Research University Samara 443086 Russian Federation
| |
Collapse
|
30
|
Van Hoomissen DJ, Vyas S. Impact of Conjugation and Hyperconjugation on the Radical Stability of Allylic and Benzylic Systems: A Theoretical Study. J Org Chem 2017; 82:5731-5742. [DOI: 10.1021/acs.joc.7b00549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Shubham Vyas
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
31
|
Mebel AM, Landera A, Kaiser RI. Formation Mechanisms of Naphthalene and Indene: From the Interstellar Medium to Combustion Flames. J Phys Chem A 2017; 121:901-926. [DOI: 10.1021/acs.jpca.6b09735] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander M. Mebel
- Department
of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander Landera
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ralf I. Kaiser
- Department
of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
32
|
Parker DSN, Kaiser RI. On the formation of nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) in circumstellar and interstellar environments. Chem Soc Rev 2017; 46:452-463. [DOI: 10.1039/c6cs00714g] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemical evolution of extraterrestrial environments leads to the formation of nitrogen substituted polycyclic aromatic hydrocarbons (NPAHs) via gas phase radical mediated aromatization reactions.
Collapse
Affiliation(s)
| | - Ralf I. Kaiser
- Department of Chemistry
- University of Hawai’i at Manoa
- Honolulu
- USA
| |
Collapse
|
33
|
Hickson KM, Loison JC, Wakelam V. Temperature dependent product yields for the spin forbidden singlet channel of the C(3P) + C2H2 reaction. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Pei L, Farrar JM. Velocity Map Imaging Study of Ion–Radical Chemistry: Charge Transfer and Carbon–Carbon Bond Formation in the Reactions of Allyl Radicals with C+. J Phys Chem A 2016; 120:6122-8. [DOI: 10.1021/acs.jpca.6b05699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Linsen Pei
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - James M. Farrar
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
35
|
Yang T, Dangi BB, Thomas AM, Sun BJ, Chou TJ, Chang AHH, Kaiser RI. Gas-Phase Synthesis of 1-Silacyclopenta-2,4-diene. Angew Chem Int Ed Engl 2016; 55:7983-7. [PMID: 27219669 DOI: 10.1002/anie.201602064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/09/2016] [Indexed: 11/08/2022]
Abstract
Silole (1-silacyclopenta-2,4-diene) was synthesized for the first time by the bimolecular reaction of the simplest silicon-bearing radical, silylidyne (SiH), with 1,3-butadiene (C4 H6 ) in the gas phase under single-collision conditions. The absence of consecutive collisions of the primary reaction product prevents successive reactions of the silole by Diels-Alder dimerization, thus enabling the clean gas-phase synthesis of this hitherto elusive cyclic species from acyclic precursors in a single-collision event. Our method opens up a versatile and unconventional path to access a previously rather obscure class of organosilicon molecules (substituted siloles), which have been difficult to access through classical synthetic methods.
Collapse
Affiliation(s)
- Tao Yang
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Beni B Dangi
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Bing-Jian Sun
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, 974, Taiwan
| | - Tzu-Jung Chou
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, 974, Taiwan
| | - Agnes H H Chang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, 974, Taiwan.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
36
|
Yang T, Dangi BB, Thomas AM, Sun BJ, Chou TJ, Chang AHH, Kaiser RI. Gas-Phase Synthesis of 1-Silacyclopenta-2,4-diene. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tao Yang
- Department of Chemistry; University of Hawai'i at Manoa; Honolulu HI 96822 USA
| | - Beni B. Dangi
- Department of Chemistry; University of Hawai'i at Manoa; Honolulu HI 96822 USA
| | - Aaron M. Thomas
- Department of Chemistry; University of Hawai'i at Manoa; Honolulu HI 96822 USA
| | - Bing-Jian Sun
- Department of Chemistry; National Dong Hwa University; Shoufeng Hualien 974 Taiwan
| | - Tzu-Jung Chou
- Department of Chemistry; National Dong Hwa University; Shoufeng Hualien 974 Taiwan
| | - Agnes H. H. Chang
- Department of Chemistry; National Dong Hwa University; Shoufeng Hualien 974 Taiwan
| | - Ralf I. Kaiser
- Department of Chemistry; University of Hawai'i at Manoa; Honolulu HI 96822 USA
| |
Collapse
|