1
|
Paschoal VH, Ribeiro MCC. Short-time collective dynamics of an ionic liquid: A computer simulation study with non-polarizable and polarizable models, and ab initio molecular dynamics. J Chem Phys 2024; 161:244502. [PMID: 39714001 DOI: 10.1063/5.0242853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024] Open
Abstract
Molecular dynamics (MD) simulation is used to study the intermolecular dynamics in the THz frequency range of the ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide, [C2C1im][FSI]. Non-polarizable and polarizable models for classical MD simulation are compared using as quality criteria ab initio molecular dynamics (AIMD) and experimental data from far-infrared (FIR) spectroscopy and previously published data of inelastic x-ray scattering (IXS). According to data from IXS spectroscopy, incorporating polarization in the classical MD simulation has relatively little effect on the dispersion curve (excitation frequency vs wavevector) for longitudinal acoustic modes. When the AIMD simulation is used as a reference, the polarizable model leads the time correlation functions of velocity, mass, and charge currents to relax abnormally quickly. The charge current spectra from the AIMD simulation and the non-polarizable model agree with the experimental FIR spectrum, while the polarizable model gives an excessively broad band. When compared to the non-polarizable model, the polarizable model does improve the calculation of transport coefficients (diffusion coefficient, viscosity, and conductivity); however, it yields overdamped short-time collective dynamics.
Collapse
Affiliation(s)
- Vitor Hugo Paschoal
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, SP, Brazil
| | - Mauro C C Ribeiro
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, SP, Brazil
| |
Collapse
|
2
|
Uthe B, Sader JE, Pelton M. Optical measurement of the picosecond fluid mechanics in simple liquids generated by vibrating nanoparticles: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:103001. [PMID: 36049471 DOI: 10.1088/1361-6633/ac8e82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Standard continuum assumptions commonly used to describe the fluid mechanics of simple liquids have the potential to break down when considering flows at the nanometer scale. Two common assumptions for simple molecular liquids are that (1) they exhibit a Newtonian response, where the viscosity uniquely specifies the linear relationship between the stress and strain rate, and (2) the liquid moves in tandem with the solid at any solid-liquid interface, known as the no-slip condition. However, even simple molecular liquids can exhibit a non-Newtonian, viscoelastic response at the picosecond time scales that are characteristic of the motion of many nanoscale objects; this viscoelasticity arises because these time scales can be comparable to those of molecular relaxation in the liquid. In addition, even liquids that wet solid surfaces can exhibit nanometer-scale slip at those surfaces. It has recently become possible to interrogate the viscoelastic response of simple liquids and associated nanoscale slip using optical measurements of the mechanical vibrations of metal nanoparticles. Plasmon resonances in metal nanoparticles provide strong optical signals that can be accessed by several spectroscopies, most notably ultrafast transient-absorption spectroscopy. These spectroscopies have been used to measure the frequency and damping rate of acoustic oscillations in the nanoparticles, providing quantitative information about mechanical coupling and exchange of mechanical energy between the solid particle and its surrounding liquid. This information, in turn, has been used to elucidate the rheology of viscoelastic simple liquids at the nanoscale in terms of their constitutive relations, taking into account separate viscoelastic responses for both shear and compressible flows. The nanoparticle vibrations have also been used to provide quantitative measurements of slip lengths on the single-nanometer scale. Viscoelasticity has been shown to amplify nanoscale slip, illustrating the interplay between different aspects of the unconventional fluid dynamics of simple liquids at nanometer length scales and picosecond time scales.
Collapse
Affiliation(s)
- Brian Uthe
- Department of Physics, UMBC (University of Maryland, Baltimore County), Baltimore, MD 21250, United States of America
| | - John E Sader
- School of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
| | - Matthew Pelton
- Department of Physics, UMBC (University of Maryland, Baltimore County), Baltimore, MD 21250, United States of America
| |
Collapse
|
3
|
Bolmatov D. The Phonon Theory of Liquids and Biological Fluids: Developments and Applications. J Phys Chem Lett 2022; 13:7121-7129. [PMID: 35950307 DOI: 10.1021/acs.jpclett.2c01779] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Among the three basic states of matter (solid, liquid, and gas), the liquid state has always eluded general theoretical approaches for describing liquid energy and heat capacity. In this Viewpoint, we derive the phonon theory of liquids and biological fluids stemming from Frenkel's microscopic picture of the liquid state. Specifically, the theory predicts the existence of phonon gaps in vibrational spectra of liquids and a thermodynamic boundary in the supercritical state. Direct experimental evidence reaffirming these theoretical predictions was achieved through a combination of techniques using static compression X-ray diffraction and inelastic X-ray scattering on deeply supercritical argon in a diamond anvil cell. Furthermore, these findings inspired and then led to the discovery of phonon gaps in liquid crystals (mesogens), block copolymers, and biological membranes. Importantly, phonon gaps define viscoelastic crossovers in cellular membranes responsible for lipid self-diffusion, lateral molecular-level stress propagation, and passive transmembrane transport of small molecules and solutes. Finally, molecular interactions mediated by external stimuli result in synaptic activity controlling biological membranes' plasticity resulting in learning and memory. Therefore, we also discuss learning and memory effects─equally important for neuroscience as well as for the development of neuromorphic devices─facilitated in biological membranes by external stimuli.
Collapse
Affiliation(s)
- Dima Bolmatov
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
4
|
Alvarez F, Arbe A, Colmenero J. Unraveling the coherent dynamic structure factor of liquid water at the mesoscale by molecular dynamics simulations. J Chem Phys 2021; 155:244509. [PMID: 34972354 DOI: 10.1063/5.0074588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an investigation by molecular dynamics (MD)-simulations of the coherent dynamic structure factor, S(Q, t) (Q: momentum transfer), of liquid water at the mesoscale (0.1 Å-1 ≤ Q ≤ Qmax) [Qmax ≈ 2 Å-1: Q-value of the first maximum of the static structure factor, S(Q), of water]. The simulation cell-large enough to address the collective properties at the mesoscale-is validated by direct comparison with recent results on the dynamic structure factor in the frequency domain obtained by neutron spectroscopy with polarization analysis [Arbe et al., Phys. Rev. Res. 2, 022015 (2020)]. We have not only focused on the acoustic excitations but also on the relaxational contributions to S(Q, t). The analysis of the MD-simulation results-including the self- and distinct contributions to the diffusive part of S(Q, t)-nicely explains why the relaxation process hardly depends on Q in the low Q-range (Q ≤ 0.4 Å-1) and how it crosses over to a diffusion-driven process at Q ≈ Qmax. Our simulations also give support to the main assumptions of the model used to fit the experimental data in the above mentioned paper. The application of such a model to the simulation S(Q, t) data delivers (i) results for the relaxation component of S(Q, t) in agreement with those obtained from neutron experiments and (ii) longitudinal and transverse hydrodynamic-like components with similar features than those identified in previous simulations of the longitudinal and transverse current spectra directly. On the other hand, in general, our MD-simulations results of S(Q, t) qualitatively agree with the viscoelastic transition framework habitually used to describe inelastic x-ray scattering results.
Collapse
Affiliation(s)
- Fernando Alvarez
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Juan Colmenero
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| |
Collapse
|
5
|
Zakhvataev VE, Kompaniets LA. On the existence of soliton-like collective modes in liquid water at the viscoelastic crossover. Sci Rep 2021; 11:5417. [PMID: 33686146 PMCID: PMC7940660 DOI: 10.1038/s41598-021-84277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/04/2021] [Indexed: 11/11/2022] Open
Abstract
The problem of large-density variations in supercooled and ambient water has been widely discussed in the past years. Recent studies have indicated the possibility of nanometer-sized density variations on the subpicosecond and picosecond time scales. The nature of fluctuating density heterogeneities remains a highly debated issue. In the present work, we address the problem of possible association of such density variations with the dynamics of terahertz longitudinal acoustic-like modes in liquid water. Our study is based on the fact that the subpicosecond dynamics of liquid water are essentially governed by the structural relaxation. Using a mode coupling theory approach, we found that for typical values of parameters of liquid water, the dynamic mechanism coming from the combination of the structural relaxation process and the finiteness of the amplitude of terahertz longitudinal acoustic-like mode gives rise to a soliton-like collective mode on a temperature-dependent nanometer length scale. The characteristics of this mode are consistent with the estimates of the amplitudes and temperature-dependent correlation lengths of density fluctuations in liquid water obtained in experiments and simulations. Thus, the fully dynamic mechanism could contribute to the formation and dynamics of fluctuating density heterogeneities. The soliton-like collective excitations suggested by our analysis may be relevant to different phenomena connected with supercooled water and can be expected to be associated with some ultrafast biological processes.
Collapse
Affiliation(s)
- V E Zakhvataev
- Federal Research Center "Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences", 660036, Krasnoyarsk, Russia.
- Siberian Federal University, 660041, Krasnoyarsk, Russia.
| | - L A Kompaniets
- Institute of Computational Modelling of the Siberian Branch of the Russian Academy of Sciences, 660036, Krasnoyarsk, Russia
| |
Collapse
|
6
|
Zakhvataev VE. Dynamic structure factor of a lipid bilayer in the presence of a high electric field. J Chem Phys 2019; 151:234902. [PMID: 31864280 DOI: 10.1063/1.5123786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The influence of a high average electric field (∼1 V/nm) in the hydrophobic interior of a bilayer lipid membrane on short-wavelength in-plane phononic motions of lipid chains is considered. The average electric field is assumed to be nearly constant on a picosecond time scale and a nanometer length scale. This field may be induced, for instance, by externally applied subnanosecond electric pulses or the membrane dipole potential. Using a generalized hydrodynamic approach, we derive a corresponding electrohydrodynamic model generalized to high wave numbers. In the considered approximation, all electric field effects are reduced only to a constant contribution to the generalized isothermal compressibility modulus. The corresponding dynamic structure factor for a lipid bilayer is derived. We show that due to polarization effects, the high field can critically impact the dynamics of longitudinal acousticlike modes at wave numbers near the major peak of the static structure factor. We estimate quantitatively that for typical lipid bilayers, transverse high electric fields can cause strong phonon energy softening, enhancement of phonon population, and formation of a gap in the dispersion of excitation frequency. The results obtained agree with simulations of the initiation of lipid bilayer electropores, suggesting that the proposed model reproduces the essential features of the field's impact on atomic density fluctuations. The proposed mechanism may have significant implications for the understanding of electroporation, passive molecular transport, and spontaneous pore formation in lipid bilayers.
Collapse
Affiliation(s)
- V E Zakhvataev
- Federal Research Center "Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036 Russia and Siberian Federal University, Krasnoyarsk 660041 Russia
| |
Collapse
|
7
|
Kryuchkov NP, Mistryukova LA, Brazhkin VV, Yurchenko SO. Excitation spectra in fluids: How to analyze them properly. Sci Rep 2019; 9:10483. [PMID: 31324848 PMCID: PMC6642218 DOI: 10.1038/s41598-019-46979-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/09/2019] [Indexed: 11/25/2022] Open
Abstract
Although the understanding of excitation spectra in fluids is of great importance, it is still unclear how different methods of spectral analysis agree with each other and which of them is suitable in a wide range of parameters. Here, we show that the problem can be solved using a two-oscillator model to analyze total velocity current spectra, while other considered methods, including analysis of the spectral maxima and single mode analysis, yield rough results and become unsuitable at high temperatures and wavenumbers. To prove this, we perform molecular dynamics (MD) simulations and calculate excitation spectra in Lennard-Jones and inverse-power-law fluids at different temperatures, both in 3D and 2D cases. Then, we analyze relations between thermodynamic and dynamic features of fluids at (Frenkel) crossover from a liquid- to gas-like state and find that they agree with each other in the 3D case and strongly disagree in 2D systems due to enhanced anharmonicity effects. The results provide a significant advance in methods for detail analysis of collective fluid dynamics spanning fields from soft condensed matter to strongly coupled plasmas.
Collapse
Affiliation(s)
- Nikita P Kryuchkov
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5, Moscow, 105005, Russia
| | - Lukiya A Mistryukova
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5, Moscow, 105005, Russia
| | - Vadim V Brazhkin
- Institute for High Pressure Physics RAS, Kaluzhskoe shosse, 14, Troitsk, Moscow, 108840, Russia
| | - Stanislav O Yurchenko
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5, Moscow, 105005, Russia.
| |
Collapse
|