1
|
Moellmer SA, Puy C, McCarty OJT. Biology of factor XI. Blood 2024; 143:1445-1454. [PMID: 37874916 PMCID: PMC11033592 DOI: 10.1182/blood.2023020719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
ABSTRACT Unique among coagulation factors, the coagulation factor XI (FXI) arose through a duplication of the gene KLKB1, which encodes plasma prekallikrein. This evolutionary origin sets FXI apart structurally because it is a homodimer with 2 identical subunits composed of 4 apple and 1 catalytic domain. Each domain exhibits unique affinities for binding partners within the coagulation cascade, regulating the conversion of FXI to a serine protease as well as the selectivity of substrates cleaved by the active form of FXI. Beyond serving as the molecular nexus for the extrinsic and contact pathways to propagate thrombin generation by way of activating FIX, the function of FXI extends to contribute to barrier function, platelet activation, inflammation, and the immune response. Herein, we critically review the current understanding of the molecular biology of FXI, touching on some functional consequences at the cell, tissue, and organ level. We conclude each section by highlighting the DNA mutations within each domain that present as FXI deficiency. Together, a narrative review of the structure-function of the domains of FXI is imperative to understand the etiology of hemophilia C as well as to identify regions of FXI to safely inhibit the pathological function of activation or activity of FXI without compromising the physiologic role of FXI.
Collapse
Affiliation(s)
- Samantha A. Moellmer
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
| | - Cristina Puy
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
| |
Collapse
|
2
|
Mendes-de-Almeida DP, Kehdy FSG, Martins-Gonçalves R, Bokel J, Grinsztejn E, Mouta Nunes de Oliveira P, Maia MDLDS, Hoagland B, Wagner Cardoso S, Grinsztejn B, Siqueira MM, Kurtz P, Bozza PT, Garcia CC. A case report of vaccine-induced immune thrombotic thrombocytopenia (VITT) with genetic analysis. Front Cardiovasc Med 2023; 10:1189320. [PMID: 37351283 PMCID: PMC10284151 DOI: 10.3389/fcvm.2023.1189320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/24/2023] [Indexed: 06/24/2023] Open
Abstract
The emergence of the rare syndrome called vaccine-induced immune thrombocytopenia and thrombosis (VITT) after adenoviral vector vaccines, including ChAdOx1 nCov-19, raises concern about one's predisposing risk factors. Here we report the case of a 56-year-old white man who developed VITT leading to death within 9 days of symptom onset. He presented with superior sagittal sinus thrombosis, right frontal intraparenchymal hematoma, frontoparietal subarachnoid and massive ventricular hemorrhage, and right lower extremity arterial and venous thrombosis. His laboratory results showed elevated D-dimer, C-reactive protein, tissue factor, P-selectin (CD62p), and positive anti-platelet factor 4. The patient's plasma promoted higher CD62p expression in healthy donors' platelets than the controls. Genetic investigation on coagulation, thrombophilia, inflammation, and type I interferon-related genes was performed. From rare variants in European or African genomic databases, 68 single-nucleotide polymorphisms (SNPs) in one allele and 11 in two alleles from common SNPs were found in the patient genome. This report highlights the possible relationship between VITT and genetic variants. Additional investigations regarding the genetic predisposition of VITT are needed.
Collapse
Affiliation(s)
- Daniela P. Mendes-de-Almeida
- Department of Hematology, Evandro Chagas National Institute of Infectious Diseases, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Department of Medical Affairs, Clinical Studies, and Post-Registration Surveillance (DEAME), Institute of Technology in Immunobiologicals/Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Fernanda S. G. Kehdy
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Remy Martins-Gonçalves
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Joanna Bokel
- Department of Hematology, Evandro Chagas National Institute of Infectious Diseases, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Onco-Hematology Unit, Clínica São Vicente, Rio de Janeiro, Brazil
| | - Eduarda Grinsztejn
- Department of Medicine, Hematology and Oncology Division, University Hospitals, Case Western University, Cleveland, OH, United States
| | - Patrícia Mouta Nunes de Oliveira
- Department of Medical Affairs, Clinical Studies, and Post-Registration Surveillance (DEAME), Institute of Technology in Immunobiologicals/Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Maria de Lourdes de Sousa Maia
- Department of Medical Affairs, Clinical Studies, and Post-Registration Surveillance (DEAME), Institute of Technology in Immunobiologicals/Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Brenda Hoagland
- Laboratory of Clinical Research on STD/AIDS, Evandro Chagas National Institute of Infectious Diseases Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Sandra Wagner Cardoso
- Laboratory of Clinical Research on STD/AIDS, Evandro Chagas National Institute of Infectious Diseases Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Laboratory of Clinical Research on STD/AIDS, Evandro Chagas National Institute of Infectious Diseases Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marilda M. Siqueira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Pedro Kurtz
- Intensive Care Department, Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | - Patricia T. Bozza
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cristiana C. Garcia
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, Brazil
| |
Collapse
|
3
|
Dorgalaleh A, Bahraini M, Shams M, Parhizkari F, Dabbagh A, Naderi T, Fallah A, Fazeli A, Ahmadi SE, Samii A, Daneshi M, Heydari F, Tabibian S, Tavasoli B, Noroozi-Aghideh A, Tabatabaei T, Gholami MS. Molecular basis of rare congenital bleeding disorders. Blood Rev 2022; 59:101029. [PMID: 36369145 DOI: 10.1016/j.blre.2022.101029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022]
Abstract
Rare bleeding disorders (RBDs), including factor (F) I, FII, FV, FVII, combined FV and FVIII (CF5F8), FXI, FXIII and vitamin-K dependent coagulation factors (VKCF) deficiencies, are a heterogeneous group of hemorrhagic disorder with a variable bleeding tendency. RBDs are due to mutation in underlying coagulation factors genes, except for CF5F8 and VKCF deficiencies. FVII deficiency is the most common RBD with >330 variants in the F7 gene, while only 63 variants have been identified in the F2 gene. Most detected variants in the affected genes are missense (>50% of all RBDs), while large deletions are the rarest, having been reported in FVII, FX, FXI and FXIII deficiencies. Most were located in the catalytic and activated domains of FXI, FX, FXIII and prothrombin deficiencies. Understanding the proper molecular basis of RBDs not only can help achieve a timely and cost-effective diagnosis, but also can help to phenotype properties of the disorders.
Collapse
|
4
|
Nowotny B, Thomas D, Schwers S, Wiegmann S, Prange W, Yassen A, Boxnick S. First randomized evaluation of safety, pharmacodynamics, and pharmacokinetics of BAY 1831865, an antibody targeting coagulation factor XI and factor XIa, in healthy men. J Thromb Haemost 2022; 20:1684-1695. [PMID: 35490404 PMCID: PMC9320929 DOI: 10.1111/jth.15744] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bleeding is a clinically significant issue with all current anticoagulants. Safer antithrombotic strategies are required. OBJECTIVES To investigate the safety, pharmacodynamics, and pharmacokinetics of BAY 1831865, a humanized, factor XI (FXI)-directed monoclonal antibody, after single intravenous (i.v.) or subcutaneous (s.c.) doses in healthy volunteers. PATIENTS/METHODS In a first-in-human, phase I study, 70 volunteers were randomly assigned (4:1) to receive single-dose BAY 1831865 (3.5, 7, 17, 35, 75, or 150 mg i.v. or 150 mg s.c.) or placebo. Adverse events, pharmacodynamics, and pharmacokinetics were evaluated. RESULTS In this study, no hemorrhage, or hypersensitivity or infusion-/injection-related reactions were reported. Drug-related adverse events occurred in 3 (5.4%) of 56 volunteers; all were mild and self-limited. Dose-dependent prolongation of activated partial thromboplastin time (aPTT) and inhibition of FXI clotting activity was observed with BAY 1831865 i.v. (geometric mean maximum ratio-to-baseline: aPTT, range, 1.09-3.11 vs. 1.05 with placebo; FXI, range, 0.70-0.04 vs. 0.91 with placebo). Onset of effect was rapid after i.v. administration, with duration of effect (up to 55 days) determined by dose. BAY 1831865 s.c. had similar pharmacodynamic effects but a slower onset of action. Terminal half-life increased continuously with increasing i.v. dose (range, 28-208 h), leading to strong and continuous increases in systemic exposure to BAY 1831865. Absolute bioavailability of BAY 1831865 s.c. was 47.2% (95% confidence interval, 30.2-73.7). CONCLUSIONS BAY 1831865 i.v. or s.c. was well tolerated, with no evidence of bleeding in healthy volunteers. BAY 1831865 exhibited pronounced, sustained dose-dependent prolongation of aPTT and duration of FXI inhibition.
Collapse
Affiliation(s)
- Bettina Nowotny
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Dirk Thomas
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Stephan Schwers
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Sara Wiegmann
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Wolfgang Prange
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Ashraf Yassen
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | | |
Collapse
|
5
|
Congenital factor XI deficiency, complete genotype and phenotype of two Iranian families. Blood Coagul Fibrinolysis 2019; 30:409-412. [PMID: 31644447 DOI: 10.1097/mbc.0000000000000862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: Congenital factor XI (FXI) deficiency is a mild trauma-related bleeding disorder with estimated worldwide prevalence of one per 1 million. The disorder is less frequent in Iran and a few studies have been performed on Iranian patients. In the current study, we assessed molecular, laboratory and clinical features of two Iranian patients with congenital FXI deficiency and their families. Clinical features and demographic data of the patients were assessed by the physician and a staff member trained specifically to deal with patients with bleeding disorders. FXI activity and antigen assays were performed for seven members of the two families and genotyping was performed by direct sequencing of all F11 gene exons and intron-exon boundaries as well as the untranslated regions. Five members of the two families were affected by FXI deficiency. Both patients experienced prolonged epistaxis, whereas other family members were asymptomatic. Two gene defects were observed in the patients and their families. Two disease-causing mutations were c.943G>A (p.Glu315Lys) missense and the four-nucleotide deletion (g.27849-27852del) in exon 15. The gene deletion was observed in homozygote state in the patient with severe FXI deficiency (FXI activity <1%) and heterozygote state in the parent, whereas the c.943G>A mutation was detected in heterozygote state and was accompanied by epistaxis in the patient. FXI deficiency is a mild bleeding disorder that is caused by heterogeneous molecular defects.
Collapse
|