1
|
Pal R, Mukherjee S, Khan A, Nathani M, Maji S, Tandey R, Das S, Patra A, Mandal V. A critical appraisal on the involvement of plant-based extracts as neuroprotective agents (2012-2022): an effort to ease out decision-making process for researchers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03266-6. [PMID: 38985312 DOI: 10.1007/s00210-024-03266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
The purpose of this review study is to provide a condensed compilation of 164 medicinal plants that have been investigated for their neuroprotective aspects by researchers between the years 2012 and 2022 which also includes a recent update of 2023-2024. After using certain keywords to retrieve the data from SCOPUS, it was manually sorted to eliminate any instances of duplication. The article is streamlined into three major segments. The first segment takes a dig into the current global trend and attempts to decrypt vital information related to plant names, families, plant parts used, and neurological disorders investigated. The second segment of the article makes an attempt to present a comprehensive insight into the various mechanistic pathways through which phytochemicals can intervene to exert neuroprotection. The final segment of the manuscript is a bibliometric appraisal of all researches conducted. The study is based on 256 handpicked articles based on decided inclusion criteria. Illustrative compilation of various pathways citing their activation and deactivation channels are also presented with possible hitting points of various phytochemicals. The present study employed Microsoft Excel 2019 and VOS viewer as data visualisation tools.
Collapse
Affiliation(s)
- Riya Pal
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Souvik Mukherjee
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Altamash Khan
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Mansi Nathani
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Sayani Maji
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Roshni Tandey
- Department of B. Pharm Ayurveda, Delhi Pharmaceutical Sciences and Research University, Sector-3, MB Road, Pushp Vihar, New Delhi, 110017, India
| | - Sinchan Das
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Arjun Patra
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Vivekananda Mandal
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India.
| |
Collapse
|
2
|
Nurmasitoh T, Sari DCR, Susilowati R. Moderate-Intensity Intermittent Exercise Prevents Memory Deficit, Hippocampal Neuron Loss, and Elevated Level of Alzheimer's Dementia Markers in the Hippocampus of Trimethyltin-Induced Rats. Ann Anat 2023; 249:152103. [PMID: 37182815 DOI: 10.1016/j.aanat.2023.152103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Moderate-intensity intermittent exercise (MIIE) has been proposed as an effective method for preventing Alzheimer dementia (AD). AIM This study aimed to investigate the effects of MIIE on the spatial memory and protein level of AD markers in the hippocampus of trimethyltin (TMT)-induced rat model of hippocampal degeneration. METHODS Male Sprague Dawley (SD) rats were randomly assigned into four groups: normal control (N), exercise control (E), TMT control (T), and exercise and TMT (ET). Rats of the exercise groups (E and ET) were forced to run on a treadmill for 30minutes each day at maximum for 12 weeks. Intraperitoneal injection of 8mg/kgBW TMT was administered as a single dose, 10 days before the last exercise treatment for the T and ET groups. The spatial memory of rats was examined using Morris Water Maze (MWM) test after the exercise period. After euthanasia, the hippocampal tissue was dissected out and the level of hippocampal presenilin (PSEN)-1 and phosphorylated tau (p-tau) protein were measured using ELISA. The total number of hippocampal pyramidal neurons was estimated using unbiased stereological analysis. Qualitative immunohistochemistry was performed to examine the expression of brain-derived neurotrophic factor (BDNF), tumor necrosis factor-alpha (TNF-α), and interleukin-10 (IL-10) in paraffin sections of the hippocampus. RESULTS TMT exposure induced memory impairment indicated by the T group having the lowest percentage of time and percentage of path length in the target quadrant compared to other groups. MIIE prevented the memory impairment effect of TMT exposure indicated by the ET group having no significantly different MWM performance compared to the E and N groups. The ET group had significantly lower levels of hippocampal AD markers, p-tau and PSEN-1, as well as significantly higher estimated total number of pyramidal neurons of hippocampal CA1 and CA2-3 regions compared to the T group. Expressions of TNF-α was weak, while the expression of IL-10 was stronger in the ET group compared to the control group. The TMT-induced group exhibited stronger expression of BDNF. CONCLUSION MIIE prevents neuronal loss and impaired spatial memory upon TMT exposure most probably via preventing elevated levels of hippocampal AD markers and neuroinflammation. WC:350.
Collapse
Affiliation(s)
- Titis Nurmasitoh
- Department of Histology & Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Department of Physiology, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Dwi Cahyani Ratna Sari
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rina Susilowati
- Department of Histology & Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
3
|
Helmy WA, Ragab TIM, Salama BM, Basha M, Shamma R, Abd El-Rahman SS, Shawky H. Novel naringin tablet formulations of agro-resides based nano/micro crystalline cellulose with neuroprotective and Alzheimer ameliorative potentials. Int J Biol Macromol 2023; 231:123060. [PMID: 36632961 DOI: 10.1016/j.ijbiomac.2022.12.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 01/11/2023]
Abstract
This study aimed to prepare micro/nanocrystalline cellulose-loaded naringin (NAR) tablets and evaluate their neuro-protective/therapeutic potentials in Alzheimer's disease (AD) model. Micro/nanocellulose was prepared from different agro-wastes, and the different cellulose preparations were then used to formulate eight oral tablets of naringin micro/nanoparticles by direct compression. AD-like symptoms were induced in adult male Sprague Dawley rats by co-administration of 150 mg/kg AlCl3 and 300 mg/kg D-galactose (oral administration/one week), and NAR tablets were assessed for neuroprotective/therapeutic potentials in terms of behavioral changes, levels of neurodegenerative and inflammatory markers, brain redox status, neurotransmitter tones, and cortex/hippocampus histopathological alterations. NAR treatments have significantly reversed the neurotoxic effect of AlCl3 as demonstrated by improved spatial and cognitive memory functions and promoted antioxidant defense mechanisms in treated AD animals. Also, the neurodegeneration was markedly restrained as reflected by marked histopathological enhancement, and prevention/amelioration of neuropsychiatric disorders, besides the restorative effect on dysregulated neurotransmitters tone. Both NAR tablet forms showed an overall higher ameliorative effect compared to the DPZ reference drug. The formulated tablets represent promising neuroprotective/therapeutic agents for Alzheimer's disease.
Collapse
Affiliation(s)
- Wafaa A Helmy
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Tamer I M Ragab
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, 12622 Cairo, Egypt.
| | - Bassem M Salama
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Mona Basha
- Pharmaceutical Technology Department, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Rehab Shamma
- Faculty of Pharmacy, Cairo University, Kasr Eleni St., Cairo, Egypt
| | | | - Heba Shawky
- Therapeutic Chemistry Department, Pharmaceutical and Drug Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt
| |
Collapse
|
4
|
A Scoping Review on the Effects of Carotenoids and Flavonoids on Skin Damage Due to Ultraviolet Radiation. Nutrients 2022; 15:nu15010092. [PMID: 36615749 PMCID: PMC9824837 DOI: 10.3390/nu15010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Skin exposure to ultraviolet (UV) rays in the sun causes premature ageing and may predispose to skin cancers. UV radiation generates excessive free radical species, resulting in oxidative stress, which is responsible for cellular and DNA damage. There is growing evidence that phytonutrients such as flavonoids and carotenoids may impede oxidative stress and prevent photodamage. We conducted a systematic review of the literature to explore the effects of certain phytonutrients in preventing skin photodamage. We searched the electronic Medline (Ovid) and Pubmed databases for relevant studies published between 2002 and 2022. The main inclusion criteria were articles written in English, and studies reporting the effects of phytonutrient-containing plants of interest on the skin or skin cells exposed to UV radiation. We focused on tea, blueberries, lemon, carrot, tomato, and grapes, which are rich in flavonoids and/or carotenoids. Out of 434 articles retrieved, 40 were identified as potentially relevant. Based on our inclusion criteria, nine articles were included in the review. The review comprises three combined in vitro and animal studies, four human studies, one in vitro research, and one mixed in vitro and human study. All the studies reported positive effects of flavonoids and carotenoid-containing plant extract on UV-induced skin damage. This evidence-based review highlights the potential use of flavonoids and carotenoids found in plants in preventing the deleterious effects of UV radiation on the skin. These compounds may have a role in clinical and aesthetic applications for the prevention and treatment of sunburn and photoaging, and may potentially be used against UV-related skin cancers.
Collapse
|
5
|
Fuloria S, Mehta J, Chandel A, Sekar M, Rani NNIM, Begum MY, Subramaniyan V, Chidambaram K, Thangavelu L, Nordin R, Wu YS, Sathasivam KV, Lum PT, Meenakshi DU, Kumarasamy V, Azad AK, Fuloria NK. A Comprehensive Review on the Therapeutic Potential of Curcuma longa Linn. in Relation to its Major Active Constituent Curcumin. Front Pharmacol 2022; 13:820806. [PMID: 35401176 PMCID: PMC8990857 DOI: 10.3389/fphar.2022.820806] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/27/2022] [Indexed: 12/16/2022] Open
Abstract
Curcuma longa Linn. (C. longa), popularly known as turmeric, belongs to the Zingiberaceae family and has a long historical background of having healing properties against many diseases. In Unani and Ayurveda medicine, C. longa has been used for liver obstruction and jaundice, and has been applied externally for ulcers and inflammation. Additionally, it is employed in several other ailments such as cough, cold, dental issues, indigestion, skin infections, blood purification, asthma, piles, bronchitis, tumor, wounds, and hepatic disorders, and is used as an antiseptic. Curcumin, a major constituent of C. longa, is well known for its therapeutic potential in numerous disorders. However, there is a lack of literature on the therapeutic potential of C. longa in contrast to curcumin. Hence, the present review aimed to provide in-depth information by highlighting knowledge gaps in traditional and scientific evidence about C. longa in relation to curcumin. The relationship to one another in terms of biological action includes their antioxidant, anti-inflammatory, neuroprotective, anticancer, hepatoprotective, cardioprotective, immunomodulatory, antifertility, antimicrobial, antiallergic, antidermatophytic, and antidepressant properties. Furthermore, in-depth discussion of C. longa on its taxonomic categorization, traditional uses, botanical description, phytochemical ingredients, pharmacology, toxicity, and safety aspects in relation to its major compound curcumin is needed to explore the trends and perspectives for future research. Considering all of the promising evidence to date, there is still a lack of supportive evidence especially from clinical trials on the adjunct use of C. longa and curcumin. This prompts further preclinical and clinical investigations on curcumin.
Collapse
Affiliation(s)
| | - Jyoti Mehta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Aditi Chandel
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Lakshmi Thangavelu
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Rusli Nordin
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
| | - Yuan Seng Wu
- Department of Biological Sciences and Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | | | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | | | - Vinoth Kumarasamy
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Perak, Malaysia
| | | | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Kedah, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
6
|
Kim MJ, Park SY, Kim Y, Jeon S, Cha MS, Kim YJ, Yoon HG. Beneficial Effects of a Combination of Curcuma longa L. and Citrus junos Against Beta-Amyloid Peptide-Induced Neurodegeneration in Mice. J Med Food 2022; 25:12-23. [PMID: 35029510 DOI: 10.1089/jmf.2021.k.0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Both Curcuma longa (CL) and Citrus junos Tanaka (CJ) have been used to treat various diseases due to their anti-inflammatory and antioxidative stress activities. In this study, we investigated the ameliorative effect of the combination of CL extract and CJ extract (CCC) against beta-amyloid (Aβ) peptide-induced neurological damage. CCC prevented neurocytotoxicity in vitro. In addition, it was confirmed that abnormal alternation behavior and memory impairment caused by Aβ peptide were reversed by treatment with CCC. Furthermore, CCC treatment led to recovery of the cholinergic system and reactive oxygen species (ROS) oxidative damage defense system. CCC induced expressions of cyclic-adenosine monophosphate response element-binding protein (CREB)-responsive element-binding protein and brain-derived neurotrophic factor were confirmed as was the significantly improved processing in the hippocampus of the mouse Aβ peptides. Accordingly, these results suggest that CCC can prevent and/or reverse neurocytotoxicity and cognitive deficits in a mouse model of Alzheimer's disease.
Collapse
Affiliation(s)
- Mi Jeong Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea.,Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Soo-Yeon Park
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Yongjae Kim
- SDC Research and Development Center, Damyang-gun, Korea
| | - Suhwa Jeon
- SDC Research and Development Center, Damyang-gun, Korea
| | - Min Seok Cha
- SDC Research and Development Center, Damyang-gun, Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Korea.,Brain Korea 21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong, Korea
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Nurmasitoh T, Sari DCR, Susilowati R. Toxic Substance-induced Hippocampal Neurodegeneration in Rodents as Model of Alzheimer’s Dementia. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Alzheimer’s Dementia (AD) cases are increasing with the global elderly population. To study the part of the brain affected by AD, animal models for hippocampal degeneration are still necessary to better understand AD pathogenesis and develop treatment and prevention measures.
AIM: This study was a systematic review of toxic substance-induced animal models of AD using the Morris Water Maze method in determining hippocampal-related memory impairment. Our aim was reviewing the methods of AD induction using toxic substances in laboratory rodents and evaluating the report of the AD biomarkers reported in the models.
METHODS: Data were obtained from articles in the PubMed database, then compiled, categorized, and analyzed. Eighty studies published in the past 5 years were included for analysis.
RESULTS AND DISCUSSION: The most widely used method was intracerebroventricular injection of amyloid-β _substances. However, some less technically challenging techniques using oral or intraperitoneal administration of other toxic substances also produce successful models. Instead of hippocampal neurodegeneration, many studies detected biomarkers of the AD pathological process while some reported inflammation, oxidative stress, neurotrophic factors, and changes of cholinergic activity. Female animals were underrepresented despite a high incidence of AD in women.
CONCLUSION: Toxic substances may be used to develop AD animal models characterized with appropriate AD pathological markers. Characterization of methods with the most easy-handling techniques and more studies in female animal models should be encouraged.
Collapse
|
8
|
Huang R, Zhu Z, Wu Q, Bekhit AEDA, Wu S, Chen M, Wang J, Ding Y. Whole-plant foods and their macromolecules: untapped approaches to modulate neuroinflammation in Alzheimer's disease. Crit Rev Food Sci Nutr 2021; 63:2388-2406. [PMID: 34553662 DOI: 10.1080/10408398.2021.1975093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Recently, sustained neuroinflammatory response in microglia and astrocytes has been found to cause the deposition of amyloid beta plaques and the hyperphosphorylation of tau protein, thereby accelerating AD progression. The lipoxin A4-transcription factor nuclear factor-kappa B and mitogen-activated protein kinase pathways have been shown to play important roles in the regulation of inflammatory processes. There is growing research-based evidence suggesting that dietary whole-plant foods, such as mushrooms and berries, may be used as inhibitors for anti-neuroinflammation. The beneficial effects of whole-plant foods were mainly attributed to their high contents of functional macromolecules including polysaccharides, polyphenols, and bioactive peptides. This review provides up-to-date information on important molecular signaling pathways of neuroinflammation and discusses the anti-neuroinflammatory effects of whole-plant foods. Further, a critical evaluation of plants' macromolecular components that have the potential to prevent and/or relieve AD is provided. This work will contribute to better understanding the pathogenetic mechanism of neuroinflammation in AD and provide new approaches for AD therapy.
Collapse
Affiliation(s)
- Rui Huang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Zhenjun Zhu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China
| | | | - Shujian Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Mengfei Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, P.R. China
| | - Yu Ding
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| |
Collapse
|
9
|
Biomedical Effects of the Phytonutrients Turmeric, Garlic, Cinnamon, Graviola, and Oregano: A Comprehensive Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phytonutrients are plant foods that contain many natural bioactive compounds, called phytochemicals, which show specific biological activities. These phytonutrients and their phytochemicals may play an important role in health care maintaining normal organism functions (as preventives) and fighting against diseases (as therapeutics). Phytonutrients’ components are the primary metabolites (i.e., proteins, carbohydrates, and lipids) and phytochemicals or secondary metabolites (i.e., phenolics, alkaloids, organosulfides, and terpenes). For years, several phytonutrients and their phytochemicals have demonstrated specific pharmacological and therapeutic effects in human health such as anticancer, antioxidant, antiviral, anti-inflammatory, antibacterial, antifungal, and immune response. This review summarizes the effects of the most studied or the most popular phytonutrients (i.e., turmeric, garlic, cinnamon, graviola, and oregano) and any reported contraindications. This article also presents the calculated physicochemical properties of the main phytochemicals in the selected phytonutrients using Lipinski’s, Veber’s, and Ghose’s rules. Based on our revisions for this article, all these phytonutrients have consistently shown great potential as preventives and therapeutics on many diseases in vitro, in vivo, and clinical studies.
Collapse
|
10
|
Caesalpinia sappan L. Ameliorates Scopolamine-Induced Memory Deficits in Mice via the cAMP/PKA/CREB/BDNF Pathway. Sci Pharm 2021. [DOI: 10.3390/scipharm89020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Memory is an essential aspect of human cognition. A decrease in this aspect is well associated with Alzheimer’s disease (AD). The development of a novel cognitive enhancer (CE) may help overcome AD-related problems. In this study, we evaluated the CE effect of Caesalpinia sappan L. (CS) in memory deficit mice. Administration of its ethanolic extract (250 and 500 mg/kg body weight (BW)) and brazilin (5 and 10 mg/kg BW) ameliorated the scopolamine-amnesic effect, as evidenced by significant decreases (p < 0.01, p < 0.05) in the escape latency time and increases (p < 0.01) in the percentage of time spent in the target quadrant of the Morris water maze test. We also examined the cyclic adenosine monophosphate (cAMP) level, protein kinase A (PKA) activity, and protein expression levels of phosphorylated cAMP response element binding (pCREB) and brain-derived neurotrophic factor (BDNF) in hippocampal tissues to elucidate the underlying molecular mechanism. Results showed that CS wood ethanolic extract and brazilin not only significantly increase (p < 0.01, p < 0.05) cAMP levels and PKA activity but also significantly enhance (p < 0.01, p < 0.05) the expression level of pCREB and BDNF in the hippocampus. These findings indicate that CS activates the cAMP/PKA/CREB/BDNF pathway. Taken together, our results demonstrate that CS is a promising herb that could be developed as a CE agent.
Collapse
|
11
|
Mataram MBA, Hening P, Harjanti FN, Karnati S, Wasityastuti W, Nugrahaningsih DAA, Kusindarta DL, Wihadmadyatami H. The neuroprotective effect of ethanolic extract Ocimum sanctum Linn. in the regulation of neuronal density in hippocampus areas as a central autobiography memory on the rat model of Alzheimer's disease. J Chem Neuroanat 2020; 111:101885. [PMID: 33188864 DOI: 10.1016/j.jchemneu.2020.101885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 11/24/2022]
Abstract
The aim of this study was to identify the effects of Ocimum sanctum Linn. ethanolic extract (OSE) on the neurons of the CA1, CA3, and DG hippocampal areas with the use of in vivo and in vitro models of Alzheimer's diseases (AD). Twenty-one two-month-old male rats were divided into three groups: untreated (Group A, n = 3), AD rats model pretreated with OSE followed by induction for Trimethyltin (TMT) on day 7 (group B, n = 9), and AD rats model treated with OSE both as pre-TMT introduction for 7 days and post-TMT induction for 21 days (group C, n = 9). AD rats were sacrificed on days 7, 14, and 21, and brain samples were collected and analyzed for neuronal density and neuropeptide Y (NPY) immunoreactivity. To corroborate the in vivo observations, HEK-293 cells were treated with TMT and used as an in vitro model of AD. The results were then analyzed using FITC Annexin V and flow cytometry. Nuclear fragmentation was observed in cells stained with Hoechst 33342 by confocal microscopy. The results showed a significant increase in the number of neurons and NPY expression in the AD rats that were pre- and post-treated with OSE (p < 0.05). Indeed, OSE was able to retain and promote neuronal density in the rat model of AD. Further studies of an in vitro model of neurodegeneration with Ocimum sanctum Linn. ethanolic extract inhibited apoptosis in TMT-induced HEK-293 cells. Moreover, OSE prevented nuclear fragmentation, which was confirmed by staining the nuclei of HEK-293 cells. Taken together, there findings suggest that OSE has the potential as a neuroprotective agent (retaining the autobiographical memory),and the neuroproliferation of neurons in the CA1, CA3, and DG hippocampal areas in the rats¡ model of neurodegeneration was mediated by activation of NPY expression.
Collapse
Affiliation(s)
| | - Puspa Hening
- Integrated Laboratory for Research and Testing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Fitria N Harjanti
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Srikanth Karnati
- Department of Anatomy and Cell Biology, Julius Maxilimilian University Wurzburg, Germany
| | - Widya Wasityastuti
- Department of Physiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
12
|
Long J, Wang Q, He H, Sui X, Lin G, Wang S, Yang J, You P, Luo Y, Wang Y. NLRP3 inflammasome activation is involved in trimethyltin-induced neuroinflammation. Brain Res 2019; 1718:186-193. [PMID: 31059678 DOI: 10.1016/j.brainres.2019.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/20/2019] [Accepted: 05/02/2019] [Indexed: 11/24/2022]
Abstract
Trimethyltin (TMT), a neurotoxic organotin compound, is selectively localized within the limbic system. The mechanisms of TMT-induced hippocampal neurodegeneration include inflammatory responses, oxidative stress, and neuronal death. Increasing evidence shows that the inflammatory response, mediated by activated inflammasomes, is involved in apoptosis and cellular dysfunction during brain injury. This study aimed to assess the role of the nucleotide-binding oligomerization domain-like receptor pyrin-domain-containing protein 3 (NLRP3) inflammasome in TMT-induced central nervous system (CNS) injury. In addition, the mechanisms underlying TMT neurotoxicity are similar to those involved in the pathogenesis of multiple neurodegenerative diseases; hence, a study on TMT cytotoxicity may be informative for the understanding of human CNS diseases. Microglia were significantly activated in the rat hippocampal dentate gyrus after TMT treatment. The mRNA expression of pro-inflammatory cytokines, interleukin-1β and interleukin-18, was induced both in vitro and in vivo. TMT treatment activated the NLRP3 inflammasome in the microglial cell line BV2. NLRP3 RNA interference significantly protected these cells from TMT-induced neuroinflammation. Our results demonstrate that the NLRP3 inflammasome is a key mediator of neuroinflammation and plays an important role in TMT-induced neuroinflammation.
Collapse
Affiliation(s)
- Jianhai Long
- State Key Laboratory of Toxicology and Medical Countermeasures, Institutes of Pharmacology and Toxicology, Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China; Poisoning Treatment Department, The Fifth Medical Center of the PLA General Hospital, No. 8 Dong da Street, Fengtai District, Beijing 100071, China
| | - Qian Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institutes of Pharmacology and Toxicology, Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China
| | - Huanhuan He
- State Key Laboratory of Toxicology and Medical Countermeasures, Institutes of Pharmacology and Toxicology, Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Institutes of Pharmacology and Toxicology, Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China
| | - Guodong Lin
- Poisoning Treatment Department, The Fifth Medical Center of the PLA General Hospital, No. 8 Dong da Street, Fengtai District, Beijing 100071, China
| | - Shuai Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institutes of Pharmacology and Toxicology, Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institutes of Pharmacology and Toxicology, Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China
| | - Pengsheng You
- State Key Laboratory of Toxicology and Medical Countermeasures, Institutes of Pharmacology and Toxicology, Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institutes of Pharmacology and Toxicology, Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China.
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institutes of Pharmacology and Toxicology, Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing 100850, China.
| |
Collapse
|