1
|
Suhas KS, Vijapure S, Yadav S, Ramesh M, Saminathan M, Jambagi K, Suresh B, Madhu CL, Kumar A, Chandra V, Telang AG. Nano-quercetin mitigates triazophos-induced testicular toxicity in rats by suppressing oxidative stress and apoptosis. Food Chem Toxicol 2024; 183:114331. [PMID: 38061569 DOI: 10.1016/j.fct.2023.114331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
The present study was designed to evaluate the testicular toxicity of triazophos in rats and to check the ameliorative effect of nano-quercetin against triazophos-induced toxicity. Nano-quercetin was synthesized from quercetin and characterized. Male Wistar rats were divided into seven groups. The control group received olive oil as a vehicle orally. The high-dose triazophos group and the low-dose triazophos group received 1/10th LD50 of triazophos (7.6 mg/kg) and 1/20th LD50 of triazophos (3.8 mg/kg), respectively. Two groups of animals were dosed with quercetin and nano-quercetin, both at 50 mg/kg body weight orally. The final two groups received high-dose triazophos with co-administration of quercetin and nano-quercetin, respectively. Triazophos disrupted the male endocrine axis by reducing the levels of steroidogenic enzymes 3-β-HSD and 17-β-HSD in testicular cells, further reducing FSH and testosterone. Also, triazophos increased the reactive oxygen species, induced lipid peroxidation, decreased the mitochondrial membrane potential, and elevated the number of apoptotic cells in rat testes. Nano-quercetin ameliorated the testicular oxidative stress and apoptotic and endocrine parameters more efficiently than quercetin. Besides, nano-quercetin alleviated the histopathological and biochemical alterations of triazophos. It is concluded that nano-quercetin has higher anti-oxidant efficacy than quercetin in protecting rats against triazophos-induced testicular toxicity.
Collapse
Affiliation(s)
- K S Suhas
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India
| | - Shubham Vijapure
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India
| | - Supriya Yadav
- Division of Medicine, Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India
| | - Madhu Ramesh
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - M Saminathan
- Centre for Animal Disease Research and Diagnosis (CADRAD), Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India
| | - Kaveri Jambagi
- Division of Medicine, Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India
| | - Bindu Suresh
- Division of Microbiology, Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India
| | - C L Madhu
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India
| | - Ajay Kumar
- Division of Animal Biochemistry, Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India
| | - Vikash Chandra
- Division of Physiology and Climatology, Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India
| | - Avinash G Telang
- Centre for Animal Disease Research and Diagnosis (CADRAD), Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India.
| |
Collapse
|
2
|
Chandra RK, Bhardwaj AK, Tripathi MK. Evaluation of triazophos induced immunotoxicity of spleen and head kidney in fresh water teleost, Channa punctata. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109029. [PMID: 33722765 DOI: 10.1016/j.cbpc.2021.109029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/20/2021] [Accepted: 03/11/2021] [Indexed: 11/30/2022]
Abstract
The utilization of pesticides has increased for destroying pests and protecting crops in the agriculture field. Triazophos is a commonly used organophosphorous insecticide that causes alterations in haematological and histological parameters in fish. The present study was designed to evaluate the effect of triazophos induced innate and cell mediated immunotoxicity in freshwater teleost, Channa punctata. Fishes were exposed to triazophos at concentrations 5 and 10% of LC50 value for 10 and 20 days. Splenic and head kidney macrophage phagocytosis, nitric oxide production and superoxide production were assayed to evaluate the innate immunity. Cell-mediated immunity was measured through splenic and head kidney lymphocyte proliferation in presence of T and B cell mitogens. Results of the present study revealed that macrophage phagocytosis was significantly reduced after in vivo triazophos treatment. Differential suppressive effect of triazophos was also observed where mitogen induced splenic and head kidney lymphocyte proliferations were reduced after 10 and 20 days treatment. Concentration dependent effect of triazophos was observed in in vivo studies where the production of reactive oxygen and nitrogen intermediates were suppressed. This study describes the first investigation of the effect of triazophos on immune functions and will help to determine appropriate ecotoxicity and immunotoxicity in freshwater teleosts.
Collapse
Affiliation(s)
- Rakesh Kumar Chandra
- Department of Zoology, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Ajay Kumar Bhardwaj
- Department of Zoology, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Manish Kumar Tripathi
- Department of Zoology, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India.
| |
Collapse
|
3
|
Zhang X, Du P, Cui X, Chen G, Wang Y, Zhang Y, Abd El-Aty AM, Hacımüftüoğlu A, Wang J, He H, Jin M, Hammock B. A sensitive fluorometric bio-barcodes immunoassay for detection of triazophos residue in agricultural products and water samples by iterative cycles of DNA-RNA hybridization and dissociation of fluorophores by Ribonuclease H. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137268. [PMID: 32084695 PMCID: PMC7938870 DOI: 10.1016/j.scitotenv.2020.137268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 05/10/2023]
Abstract
Although the toxicity of triazophos is high and it has been pulled from the market in many countries; it is still widely used and frequently detected in agricultural products. While conventional analyses have been routinely used for the quantification and monitoring of triazophos residues, those for detecting low residual levels are deemed necessary. Therefore, we developed a novel and sensitive fluorometric signal amplification immunoassay employing bio-barcodes for the quantitative analysis of triazophos residues in foodstuffs and surface water. Herein, monoclonal antibodies (mAbs) attached to gold nanoparticles (AuNPs) were coated with DNA oligonucleotides (used as a signal generator), and a complementary fluorogenic RNA was used for signal amplification. The system generated detection signals through DNA-RNA hybridization and subsequent dissociation of fluorophores by Ribonuclease H (RNase H). It has to be noted that RNase H can only disintegrate the RNA in DNA-RNA duplex, but not cleave single or double-stranded DNA. Hence, with iterative cycles of DNA-RNA hybridization, sufficient strong signal was obtained for reliable detection of residues. Furthermore, this method enables quantitative detection of triazophos residues through fluorescence intensity measurements. The competitive immunoassay shows a wide linear range of 0.01-100 ng/mL with a limit of detection (LOD) of 0.0032 ng/mL. The assay substantially meets the demand for the low residue detection of triazophos residues in agricultural products and water samples. Accuracy (expressed as spiked recovery %) and coefficient of variation (CV) were ranged from 73.4% to 116% and 7.04% to 17.4%, respectively. The proposed bio-barcodes immunoassay has the advantages of being stable, reproducible, and reliable for residue detection. In sum, the present study provides a novel approach for detection of small molecules in various sample matrices.
Collapse
Affiliation(s)
- Xiuyuan Zhang
- College of Life Sciences, YanTai University, Yantai 264005, China; Key Laboratory of Agro-product Quality and Food Safety, Institute of Quality Standard &Testing Technology for Agro-Products, Chinses Academy of Agricultural Science, Beijing 100081, China
| | - Pengfei Du
- Key Laboratory of Agro-product Quality and Food Safety, Institute of Quality Standard &Testing Technology for Agro-Products, Chinses Academy of Agricultural Science, Beijing 100081, China
| | - Xueyan Cui
- Key Laboratory of Agro-product Quality and Food Safety, Institute of Quality Standard &Testing Technology for Agro-Products, Chinses Academy of Agricultural Science, Beijing 100081, China
| | - Ge Chen
- Key Laboratory of Agro-product Quality and Food Safety, Institute of Quality Standard &Testing Technology for Agro-Products, Chinses Academy of Agricultural Science, Beijing 100081, China
| | - Yuanshang Wang
- Key Laboratory of Agro-product Quality and Food Safety, Institute of Quality Standard &Testing Technology for Agro-Products, Chinses Academy of Agricultural Science, Beijing 100081, China
| | - Yudan Zhang
- Key Laboratory of Agro-product Quality and Food Safety, Institute of Quality Standard &Testing Technology for Agro-Products, Chinses Academy of Agricultural Science, Beijing 100081, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Jing Wang
- Key Laboratory of Agro-product Quality and Food Safety, Institute of Quality Standard &Testing Technology for Agro-Products, Chinses Academy of Agricultural Science, Beijing 100081, China
| | - Hongjun He
- College of Life Sciences, YanTai University, Yantai 264005, China.
| | - Maojun Jin
- Key Laboratory of Agro-product Quality and Food Safety, Institute of Quality Standard &Testing Technology for Agro-Products, Chinses Academy of Agricultural Science, Beijing 100081, China; Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, Davis, CA 95616, USA.
| | - Bruce Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, Davis, CA 95616, USA
| |
Collapse
|
4
|
Yang FW, Li YX, Ren FZ, Wang R, Pang GF. Toxicity, residue, degradation and detection methods of the insecticide triazophos. ENVIRONMENTAL CHEMISTRY LETTERS 2019; 17:1769-1785. [DOI: 10.1007/s10311-019-00910-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/12/2019] [Indexed: 08/22/2024]
|