1
|
Vignesh A, Amal TC, Vasanth K. Food contaminants: Impact of food processing, challenges and mitigation strategies for food security. Food Res Int 2024; 191:114739. [PMID: 39059927 DOI: 10.1016/j.foodres.2024.114739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Food preparation involves the blending of various food ingredients to make more convenient processed food products. It is a long chain process, where each stage posing a risk of accumulating hazardous contaminants in these food systems. Protecting the public health from contaminated foods has become a demanding task in ensuring food safety. This review focused on the causes, types, and health risks of contaminants or hazardous chemicals during food processing. The impact of cooking such as frying, grilling, roasting, and baking, which may lead to the formation of hazardous by-products, including polycyclic aromatic hydrocarbons (PAHs), heterocyclic amines (HCAs), acrylamide, advanced glycation end products (AGEs), furan, acrolein, nitrosamines, 5-hydroxymethylfurfural (HMF) and trans-fatty acids (TFAs). Potential health risks such as carcinogenicity, genotoxicity, neurotoxicity, and cardiovascular effects are emerging as a major problem in the modern lifestyle era due to the increased uptakes of contaminants. Effects of curing, smoking, and fermentation of the meat products led to affect the sensory and nutritional characteristics of meat products. Selecting appropriate cooking methods include temperature, time and the consumption of the food are major key factors that should be considered to avoid the excess level intake of hazardous contaminants. Overall, this study underscores the importance of understanding the risks associated with food preparation methods, strategies for minimizing the formation of harmful compounds during food processing and highlights the need for healthy dietary choices to mitigate potential health hazards.
Collapse
Affiliation(s)
- Arumugam Vignesh
- Department of Botany, Nallamuthu Gounder Mahalingam College (Autonomous), Pollachi 642 001, Tamil Nadu, India.
| | - Thomas Cheeran Amal
- ICAR - Central Institute for Cotton Research, RS, Coimbatore 641 003, Tamil Nadu, India
| | - Krishnan Vasanth
- Department of Botany, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| |
Collapse
|
2
|
Vahidi S, Agah S, Mirzajani E, Asghari Gharakhyli E, Norollahi SE, Rahbar Taramsari M, Babaei K, Samadani AA. microRNAs, oxidative stress, and genotoxicity as the main inducers in the pathobiology of cancer development. Horm Mol Biol Clin Investig 2024; 45:55-73. [PMID: 38507551 DOI: 10.1515/hmbci-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
Cancer is one of the most serious leading causes of death in the world. Many eclectic factors are involved in cancer progression including genetic and epigenetic alongside environmental ones. In this account, the performance and fluctuations of microRNAs are significant in cancer diagnosis and treatment, particularly as diagnostic biomarkers in oncology. So, microRNAs manage and control the gene expression after transcription by mRNA degradation, or also they can inhibit their translation. Conspicuously, these molecular structures take part in controlling the cellular, physiological and pathological functions, which many of them can accomplish as tumor inhibitors or oncogenes. Relatively, Oxidative stress is defined as the inequality between the creation of reactive oxygen species (ROS) and the body's ability to detoxify the reactive mediators or repair the resulting injury. ROS and microRNAs have been recognized as main cancer promoters and possible treatment targets. Importantly, genotoxicity has been established as the primary reason for many diseases as well as several malignancies. The procedures have no obvious link with mutagenicity and influence the organization, accuracy of the information, or fragmentation of DNA. Conclusively, mutations in these patterns can lead to carcinogenesis. In this review article, we report the impressive and practical roles of microRNAs, oxidative stress, and genotoxicity in the pathobiology of cancer development in conjunction with their importance as reliable cancer biomarkers and their association with circulating miRNA, exosomes and exosomal miRNAs, RNA remodeling, DNA methylation, and other molecular elements in oncology.
Collapse
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, 37554 Guilan University of Medical Sciences , Rasht, Iran
| | | | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Morteza Rahbar Taramsari
- Department of Forensic Medicine, School of Medicine, 37554 Guilan University of Medical Sciences , Rasht, Iran
| | - Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Aydin M, Guven Ezer B, Rencuzogullari E. The Future of the Teratogenicity Testing. Methods Mol Biol 2024; 2753:143-150. [PMID: 38285336 DOI: 10.1007/978-1-0716-3625-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The purpose of this review is to examine the importance, possible advantages and disadvantages of teratogenicity tests, and their future. For this purpose, numerous sources have been scanned in the field of teratogenicity. Although there are many methods related to teratogenic studies and very important studies have been made in this field, there are still serious deficiencies. There are advantages and disadvantages of in vitro and in vivo classical tests that have been used so far. The current status of in vivo tests is a matter of debate, especially due to the use of experimental animals. However, in vitro tests that do not perform the distribution and metabolism of chemicals also raise doubts in determination of teratogenicity. Despite the modern approaches of molecular biology and genetics and the best diagnostic techniques, the real cause of more than half of congenital diseases is still not understood. In this sense, the importance and necessity of teratogenic tests are understood once again. It is necessary to develop faster, reliable, and inexpensive techniques to replace traditional in vivo tests. It is important to disseminate harmless and reliable imaging techniques such as micro-CT. The use of European Center for the Validation of Alternative Methods (ECVAM) scientifically validated and approved in vitro tests such as embryonic stem cell test (EST), micro mass test (MM), and whole embryo culture (WEC) tests in routine screening can provide a solution in a shorter time than the classical tests. Improving these tests and developing new tests can help to solve the problem permanently.
Collapse
Affiliation(s)
- Muhsin Aydin
- Department of Biology, Science and Letters Faculty, Adiyaman University, Adiyaman, Turkey
| | - Banu Guven Ezer
- Department of Biology, Institute of Graduate Education, Adiyaman University, Adiyaman, Turkey
| | - Eyyup Rencuzogullari
- Department of Biology, Science and Letters Faculty, Adiyaman University, Adiyaman, Turkey.
| |
Collapse
|
4
|
Bugda H, Guven Ezer B, Rencuzogullari E. In vitro screening of genotoxicity and mutagenicity of pyriproxyfen in human lymphocytes and Salmonella typhimurium TA98 and TA100 strains. Drug Chem Toxicol 2023; 46:955-961. [PMID: 35982527 DOI: 10.1080/01480545.2022.2113096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/22/2022] [Accepted: 08/07/2022] [Indexed: 11/03/2022]
Abstract
Pyriproxyfen (PPX) is a pesticide/larvicide used to increase productivity in agriculture against insects by inhibiting development of insects' larvae. In this study, cytotoxic, genotoxic, and mutagenic effects of PPX were investigated in human peripheral lymphocytes and Salmonella typhimurium strains by performing chromosomal aberration, micronucleus (MN) tests, and Ames test, respectively. For the chromosome aberration (CA) and MN methods, blood from four healthy donors (two men and two women, nonsmokers) were used. Two hundred microliters of blood was inoculated into PbMax medium and prepared according to International Guidelines. For the Ames test, S. typhimurium TA98 and TA100 strains were used to detect frameshift and base pair substitution mutagens, respectively. PPX induced both the CA percentage and MN frequency in human peripheral lymphocytes and exhibited cytotoxic effects. In addition, it showed a mutagenic effect at all doses in TA98 and TA100 strains in the presence of S9mix; however, no such effect was observed in the absence of S9mix. According to the obtained results, it can be said that PPX has genotoxic and mutagenic potentials.
Collapse
Affiliation(s)
- Havva Bugda
- Department of Biology, Adiyaman University, Institute of Graduate Education, Adiyaman, Turkey
| | - Banu Guven Ezer
- Department of Biology, Adiyaman University, Institute of Graduate Education, Adiyaman, Turkey
| | - Eyyup Rencuzogullari
- Department of Biology, Faculty of Science and Letters, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
5
|
Ortiz-García RG, Gómez-Meda BC, Gutiérrez-Sevilla JE, Gallegos-Arreola MP, Zamora-Perez AL, Ortiz-García YM, García-Arias VE, Torres-Mendoza BM, Zúñiga-González GM. Micronuclei and nuclear buds in amniotic tissue of rats treated with cyclophosphamide. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 890:503659. [PMID: 37567649 DOI: 10.1016/j.mrgentox.2023.503659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023]
Abstract
Fetal development can be altered by DNA damage caused by maternal exposure to chemical, physical, or biological agents during gestation. One method of assessing genotoxicity is to detect micronuclei (MNs) and/or nuclear abnormalities. This can be performed in vivo and requires only frequently dividing tissues, such as amniotic tissue (AT), which is in contact with the fetal environment and is composed of very thin layers of cells. This study evaluated the presence of MNs, nucleoplasmic bridges, and nuclear buds (NBs) in the fetal AT following maternal exposure to cyclophosphamide (CP) during pregnancy. Pregnant Wistar rats were divided into a negative control group and an experimental group that was orally administered CP (10 mg/kg). Daily blood smears were obtained from pregnant rats on days 14-19 of gestation. The rats were dissected, and fetal ATs were obtained on the 19th day of gestation. The MN and NB frequencies in AT cells were analyzed using a fluorescence microscope (100 ×). Micronucleated erythrocytes in the peripheral blood of the control rats were also assessed. Micronucleated polychromatic erythrocyte frequencies were significantly higher than those in the controls. Polychromatic erythrocyte frequencies were lower in CP-treated rats than in controls at 48-120 h. Fetuses in the CP-treated group also showed a significant increase in MNs and NBs in AT cells. In conclusion, AT could be used for analyzing MNs and NBs in rats following maternal exposure to a genotoxic agent and as a viable alternative for analyzing the integrity of fetal DNA during gestation.
Collapse
Affiliation(s)
- Ramón Guillermo Ortiz-García
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; Laboratorio de Mutagénesis, División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Belinda Claudia Gómez-Meda
- Instituto de Genética Humana "Dr. Enrique Corona Rivera", Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Juan Ernesto Gutiérrez-Sevilla
- Laboratorio de Inmunodeficiencias y retrovirus humanos, División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico; Departamento de Clínicas Medicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Martha Patricia Gallegos-Arreola
- Laboratorio de Genética Molecular, División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Ana Lourdes Zamora-Perez
- Instituto de Investigación en Odontología, Departamento de Clínicas Odontológicas Integrales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Yveth Marlene Ortiz-García
- Instituto de Investigación en Odontología, Departamento de Clínicas Odontológicas Integrales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; Laboratorio de Apoyo a la Vigilancia e Investigación Epidemiológica, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Víctor Eduardo García-Arias
- Laboratorio de Mutagénesis, División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Blanca Miriam Torres-Mendoza
- Laboratorio de Inmunodeficiencias y retrovirus humanos, División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico; Departamento de Clínicas Medicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Guillermo Moisés Zúñiga-González
- Laboratorio de Mutagénesis, División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
6
|
Adverse Effects of Bisphenol A on the Liver and Its Underlying Mechanisms: Evidence from In Vivo and In Vitro Studies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8227314. [PMID: 36017387 PMCID: PMC9398799 DOI: 10.1155/2022/8227314] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/06/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022]
Abstract
BPA is a known endocrine-disrupting agent that is capable of binding to the estrogen receptor and has exhibited adverse effects in many laboratory animal and in vitro studies. Moreover, it also been shown to have estrogenic, antiandrogenic, inflammatory, and oxidative properties. The widespread presence of BPA in the environment presents a considerable threat to humans. BPA has been shown to be leached into the human ecosystem, where it is commonly found in food products consumed by humans. Although the concentration is relatively low, its prolonged consumption may cause a variety of deleterious health effects. The liver is an important organ for metabolizing and detoxifying toxic metabolites to protect organisms from potentially toxic chemical insults. BPA that is ingested will be eliminated by the liver. However, it has also induced hepatoxicity and injury via various mechanisms. To find research demonstrating the effects of BPA on kidney, a number of databases, including Google Scholar, MEDLINE, PubMed, and the Directory of Open Access Journals, were searched. Thus, this review summarizes the research on the relationship between BPA and its effects on the liver-derived from animals and cellular studies. The underlying mechanism of liver injury caused by BPA is also elucidated.
Collapse
|
7
|
Senthil Kumar S, Swaminathan A, Abdel-Daim MM, Sheik Mohideen S. A systematic review on the effects of acrylamide and bisphenol A on the development of Drosophila melanogaster. Mol Biol Rep 2022; 49:10703-10713. [PMID: 35753027 DOI: 10.1007/s11033-022-07642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/14/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
The current global scenario has instigated a steady upsurge of synthetic chemicals usage thereby creating a toxic environment unsuitable for animals and humans. Acrylamide and bisphenol A are some of the most common toxins found in the atmosphere due to their extensive involvement in numerous industrial processes. Acrylamide, an occupational hazard toxin has been known to cause severe nerve damage and peripheral neuronal damage in both animals and humans. General sources of acrylamide exposure are effluents from textile and paper industries, cosmetics, and thermally processed foods rich in starch. Bisphenol A (BPA) is generally found in food packaging materials, dental sealants, and plastic bottles. It is highly temperature-sensitive that can easily leach into the food products or humans on contact. The genotoxic and neurotoxic effects of acrylamide and bisphenol A have been widely researched; however, more attention should be dedicated to understanding the developmental toxicity of these chemicals. The developmental impacts of toxin exposure can be easily understood using Drosophila melanogaster as a model given considering its short life span and genetic homology to humans. In this review, we have discussed the toxic effects of acrylamide and BPA on the developmental process of Drosophila melanogaster.
Collapse
Affiliation(s)
- Swetha Senthil Kumar
- Developmental Biology Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Chengalpattu, Tamil Nadu, India
| | - Abhinaya Swaminathan
- Developmental Biology Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Chengalpattu, Tamil Nadu, India
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522, Ismailia, Egypt
| | - Sahabudeen Sheik Mohideen
- Developmental Biology Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Chengalpattu, Tamil Nadu, India.
| |
Collapse
|
8
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
9
|
Choudhuri S, Kaur T, Jain S, Sharma C, Asthana S. A review on genotoxicity in connection to infertility and cancer. Chem Biol Interact 2021; 345:109531. [PMID: 34058178 DOI: 10.1016/j.cbi.2021.109531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Genotoxicity has been identified as the main cause of infertility and a variety of cancers. The mechanisms affect the structure, quality of the information or the segregation of DNA and are not inherently correlated with mutagenicity. The concept of genotoxicity, the chemical classes that cause genetic damage and the associated mechanisms of action are discussed here. Hazardous effects of pharmaceuticals, cosmetics, agrochemicals, industrial compounds, food additives, natural toxins and nanomaterials are, in large part, identified by genotoxicity and mutagenicity tests. These are critical and early steps in industrial and regulatory health assessment. Though several in vitro experiments are commonly used and approval by regulatory agencies for commercial licensing of drugs, their accuracy in human predictions for genotoxic and mutagenic effects is frequently questioned. Treatment of real and functional genetic toxicity problems depends in detail on the knowledge of mechanisms of DNA damage in the molecular, subcellular, cellular and tissue or organ system levels. Current strategies for risk assessment of human health need revisions to achieve robust and reliable results for optimizing their effectiveness. Additionally, computerized methods, neo-biomarkers leveraging '-omics' approaches, all of which can provide a convincing genotoxicity evaluation to reduce infertility and cancer risk.
Collapse
Affiliation(s)
- Sharmistha Choudhuri
- Department of Biochemistry, R. G. Kar Medical College and Hospital, Kolkata, West Bengal, India
| | - Taruneet Kaur
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Sapna Jain
- Multidisciplinary Clinical Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Chandresh Sharma
- Multidisciplinary Clinical Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana, India.
| | - Shailendra Asthana
- Non-Communicable Disease, Translational Health Science and Technology Institute, Faridabad, Haryana, India.
| |
Collapse
|
10
|
Knudsen LE, Kirsch-Volders M. Micronuclei, reproduction and child health. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108345. [PMID: 34083036 DOI: 10.1016/j.mrrev.2020.108345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 11/26/2022]
Abstract
The current review looks for relationships between results from biomarker studies with micronucleus and health effects related to reproduction and children. In adults, an age related increase in MN is well known as well as associations with environmental exposures especially air pollution from traffic and smoking. Literature searches in PubMED and SCOPUS were performed with the following keywords reproduction, children, micronuclei, health effects. In total 162 studies were identified with the keyword children. Concerning children and health and children and environmental exposures, the titles and abstracts of a total of 162 publications were screened for language, inclusion of data from children and selected according to a study selection chart. 9 studies were included for children and health, and 21 studies for children and environmental exposures, with 12 in buccal cells and 9 in lymphocytes. The publications were read and included in tables if data on controls was available. MN frequencies were collected for peripheral blood lymphocytes (PBLs), reticulocytes or buccal cells (BC) and reported as Mean ± SD or Median (IQR). The Mean frequency Ratio, MRi, corresponding to the MN mean for study persons divided by MN mean for control persons was stated as reported in the publication or calculated by us from the data in the publication, where possible. Our systematic analysis revealed a number of positive associations of MN frequencies as a marker of increased health risk in relation to reproduction as well as child health. The majority of studies reported with children concerns exposures of children as well as maternal exposures and newborn health with MN as a biomarker of exposure. Exposure monitoring by MN as biomarker is also reported in studies of school children however most often not related to health effects. The MRis are found in ranges from 1 to 5.5 most studies around 2. As far as MN frequencies in children and exposure are concerned, the MRis range from 0.9 to 5.5, with a range from 1.3-4.9 for lymphocytes and from 1.5 to 2.5 in buccal cells, except for two studies with no differences found between cases and controls. Only one study is available for MRi calculation in reticulocytes with the value of 2.3. These data are supporting MN as a relevant biomarker for children health. However, the data is mostly from small studies with different protocol leaving out the possibility of metanalyses and even statistical comparisons among studies. The actual risk from elevated MNs in children waits large cohort studies with pooled datasets as performed with MN measured in adults. Introduction of buccal cells as non invasive alternative to lymphocytes is increasing and as with the lymphocytes standardised protocols are recommended to enable comparative studies and metaanalyses.
Collapse
Affiliation(s)
| | - Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Belgium
| |
Collapse
|
11
|
Shi YH, Xiao JJ, Liu YY, Deng YJ, Feng WZ, Wei D, Liao M, Cao HQ. Gut microbiota influence on oral bioaccessibility and intestinal transport of pesticides in Chaenomeles speciosa. Food Chem 2020; 339:127985. [PMID: 32920305 DOI: 10.1016/j.foodchem.2020.127985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
There is limited research focusing on the effects of human gut microbiota on the oral bioaccessibility and intestinal absorption of pesticide residues in food. In the present study, we use a modified setup of the Simulator of the Human Intestinal Microbial Ecosystem for the determination of pesticide residue bioaccessibility in Chaenomeles speciosa, and a Caco-2 cell model of human intestinal absorption. Results showed that gut microbiota played a dual role based their effects on contaminant release and metabolism in the bioaccessibility assay, and Lactobacillus plantarum was one of key bacterial species in the gut microbiota that influenced pesticide stability significantly. The addition of L. plantarum to the system reduced the relative amounts (by 11.40-86.51%) of six pesticides. The interaction between the food matrix and human gut microbiota led to different absorption rates, and the barrier effects increased with an increase in incubation time.
Collapse
Affiliation(s)
- Yan-Hong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Jin-Jing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Yu-Ying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Ya-Jing Deng
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Wen-Zhe Feng
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Dong Wei
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Hai-Qun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China.
| |
Collapse
|