1
|
Sedrati F, Bouzahouane H, Khaldi F, Menaa M, Bouarroudj T, Gzara L, Zaidi H, Bensalem M, Laouar O, Sleimi N, Nasri H, Ouali K. In vivo assessment of oxidative stress, neurotoxicity and histological alterations induction in the marine gastropod Stramonita haemastoma exposed to Cr 2O 3 and Al 2O 3 nanoparticles. CHEMOSPHERE 2024; 366:143434. [PMID: 39357654 DOI: 10.1016/j.chemosphere.2024.143434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/06/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
The increased use of nanoparticles (NPs) is expected to raise their presence in the marine ecosystem, which is considered as the final destination of released NPs. This study investigated the toxicity of Cr2O3 (42 nm) and Al2O3 (38 nm) NPs (1, 2.5, and 5 mg/L) on the digestive glands of Stramonita haemastoma for 7, 14, and 28 days by oxidative stress biomarkers, neurotoxicity indicator assessment, and histological study. Results revealed an imbalance in antioxidants at all periods. Following 7 days, both NPs caused GSH depletion with marked impacts from Al2O3. GPx, CAT, and AChE were also decreased with the highest changes induced by Cr2O3. Both NPs inducted GSH and GST levels on days 14 and 28, with more effects from Cr2O3 exposure. GPx, AChE, and MDA induction were observed on day 28, while MT varied through NPs and time, with imbalanced levels at all periods noticed, SOD was mostly not affected. Histology revealed alterations including necrosis and interstitial deteriorations; quantitative analysis through the histological condition index revealed dose-dependent impacts, with the highest values attributed to Cr2O3 exposure. While PCA revealed the co-response of GSH, GST, GPx, CAT, and AchE with separated MT responses. This study reported oxidative stress induction through a multi-biomarkers investigation, neurotoxicity, and histological damages in the digestive gland of S. haemastoma following Cr2O3 and Al2O3 NPs exposure.
Collapse
Affiliation(s)
- Fateh Sedrati
- Laboratory of Sciences and Technology of Water and Environment, Mohamed Cherif Messaadia University, BP 1553, 41000, Souk Ahras, Algeria
| | - Hana Bouzahouane
- Department of Biology, Faculty of Nature and Life Sciences, Mohamed Cherif Messaadia University, Souk Ahras, 41000, Algeria; Laboratory of Environmental Biosurveillance, Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12, El Hadjar, Annaba, 23000, Algeria.
| | - Fadila Khaldi
- Laboratory of Sciences and Technology of Water and Environment, Mohamed Cherif Messaadia University, BP 1553, 41000, Souk Ahras, Algeria; Department of Biology, Faculty of Nature and Life Sciences, Mohamed Cherif Messaadia University, Souk Ahras, 41000, Algeria
| | - Mohcen Menaa
- Department of Biology, Faculty of Nature and Life Sciences, Mohamed Cherif Messaadia University, Souk Ahras, 41000, Algeria
| | - Tayeb Bouarroudj
- Scientific and Technical Research Center in Physico-Chemical Analyses (CRAPC), Industrial Zone, PO-Box 384 Bousmail, Tipaza, Algeria
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box: 80200, Jeddah, 21589, Saudi Arabia
| | - Hadjer Zaidi
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of Life and Nature Sciences, University of Chadli Bendjedid, El Taref, Algeria
| | - Mounira Bensalem
- University August 20, 1955, Skikda, Bp26 El Hadaik Skikda, Algeria
| | - Omar Laouar
- Central Laboratory of Pathology and Molecular biology, CHU, Annaba, Algeria; Faculty of Medicine, Badji Mokhtar University, BP 12, El Hadjar, Annaba, 23000, Algeria
| | - Noomene Sleimi
- RME-Laboratory of Resources, Materials, and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, 7021, Tunisia
| | - Hichem Nasri
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of Life and Nature Sciences, University of Chadli Bendjedid, El Taref, Algeria
| | - Kheireddine Ouali
- Laboratory of Environmental Biosurveillance, Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12, El Hadjar, Annaba, 23000, Algeria
| |
Collapse
|
2
|
Meddeb ER, Trea F, Djekoun A, Nasri H, Ouali K. Subchronic toxicity of iron-selenium nanoparticles on oxidative stress response, histopathological, and nuclear damage in amphibian larvae Rana saharica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112321-112335. [PMID: 37831248 DOI: 10.1007/s11356-023-30063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
In this work, we evaluated the subchronic toxicity of FeSe nanoparticles (NPs) in tadpoles of Rana saharica. Tadpoles were exposed for 1-3 weeks to FeSe NPs at 5 mg/L and 100 mg/L rates. Parameters of oxidative stress were measured in whole larvae, and the micronucleus test was performed on circulating blood erythrocytes. We noted a disturbance of the detoxification systems. Enzymatic and non-enzymatic data showed that exposure to FeSe NPs involved a highly significant depletion of GSH, a significant increase in GST activity, and a lipid peroxidation associated with a highly significant increase in MDA. We also noted a neurotoxic effect characterized by a significant inhibition of AChE activity. A micronucleus test showed concentration-dependent DNA damage. This research reveals that these trace elements, in their nanoform, can cause significant neurotoxicity, histopathologic degeneration, cellular and metabolic activity, and genotoxic consequences in Rana larvae.
Collapse
Affiliation(s)
- El Rym Meddeb
- Faculty of Sciences, Laboratory of Environmental Biomonitoring, Badji-Mokhtar University, Annaba, Algeria
| | - Fouzia Trea
- Faculty of Sciences, Laboratory of Environmental Biomonitoring, Badji-Mokhtar University, Annaba, Algeria
| | - Abdelmalik Djekoun
- Faculty of Sciences, Materials Physics Laboratory, Badji-Mokhtar University, Annaba, Algeria
| | - Hichem Nasri
- Faculty of Natural and Life Sciences, Ecotoxicology Laboratory, Chadli Bendjedid University, ElTarf, Algeria
| | - Kheireddine Ouali
- Environmental Bio Surveillance, Department of Biology, Faculty of Sciences, Laboratory of Environmental Biomonitoring Badji-Mokhtar University, BP 12 Sidi Amar, Annaba, Algeria.
| |
Collapse
|
3
|
Nunes SM, Josende ME, Fattorini D, Regoli F, Monserrat JM, Ventura-Lima J. Polystyrene microplastic alters the redox state and arsenic metabolization in the freshwater bivalve Limnoperna fortunei. Toxicol Res (Camb) 2023; 12:824-832. [PMID: 37915497 PMCID: PMC10615819 DOI: 10.1093/toxres/tfad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/18/2023] [Accepted: 07/31/2023] [Indexed: 11/03/2023] Open
Abstract
Most organisms possess the capacity to metabolize arsenic (As) accumulating compounds to less toxic forms, thus minimizing the adverse effect induced by this metalloid. However, other contaminants may to interfere with As metabolism, contributing to the accumulation of more toxic compounds. Microplastics (MPs) are omnipresent in aquatic environment and may induce toxicological effects (alone or in combination with other contaminants) on living organisms. Therefore, the objective of the present study was to evaluate the effect of the exposure of the freshwater clam Limnoperna fortunei to a combination of MP (4 and 40 μg/L of polystyrene microbeads, 1.05 μm) and As (50 μg/L) for 48 h, evaluating the accumulation and metabolization of As and oxidative stress parameters, such as catalase (CAT), glutathione-S-transferase activities, total antioxidant competence, reduced glutathione (GSH), and lipid damage in the gills and digestive glands. Results revealed that low MP concentration disrupts the redox state of the digestive gland by a decrease in the antioxidant activity (CAT and total antioxidant capacity). GSH levels in the gills of animals exposed to MP (4 μg/L) alone and the combination of MP + As increased, concomitant with an increase in the percentage of toxic compounds, indicating the effect of MP on As metabolism. Although, few studies evaluated the effect of coexposure to MP + As by considering metabolization of metalloid in freshwater bivalve, our results revealed that exposure to MP reduced the metabolization capacity of As, favoring the accumulation of more toxic compounds besides the MP alone, which showed a pro-oxidant effect in L. fortunei.
Collapse
Affiliation(s)
- Silvana Manske Nunes
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande-FURG, Avenida Itália, km 8, s/nº, Rio Grande 96203900, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB-FURG, Rio Grande, Brazil
| | - Marcelo Estrella Josende
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande-FURG, Avenida Itália, km 8, s/nº, Rio Grande 96203900, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB-FURG, Rio Grande, Brazil
| | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianchi, Ancona 60100, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianchi, Ancona 60100, Italy
| | - José Maria Monserrat
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande-FURG, Avenida Itália, km 8, s/nº, Rio Grande 96203900, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB-FURG, Rio Grande, Brazil
| | - Juliane Ventura-Lima
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande-FURG, Avenida Itália, km 8, s/nº, Rio Grande 96203900, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB-FURG, Rio Grande, Brazil
| |
Collapse
|
4
|
Buitrago SAM, Colombo GM, Buitrago JR, Gomes RMM, de Sousa AC, Pedrosa VF, Romano LA, de Carvalho LM, Adolfo FR, Junior WW, Josende ME, Monserrat JM. Silver nano/microparticle toxicity in the shrimp Litopenaeus vannamei (Boone, 1931). Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109493. [PMID: 36302473 DOI: 10.1016/j.cbpc.2022.109493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 12/27/2022]
Abstract
The effects of silver nano/microparticles (AgP) on juvenile Litopenaeus vannamei shrimp were evaluated through several responses, aiming to use it as a prophylactic and therapeutic method. Shrimps (3.19 ± 0.13 g) were exposed to clear water for 3 h with increasing concentrations of nanosilver (0; 25; 100; and 400 μg/l). After 3 h of exposure, they were transferred to water without nanosilver for 30 days (recovery). The weight gain and weekly growth were not affected by AgNP. Total antioxidant capacity (ACAP) increased in the hepatopancreas (exposure period) and gills (recovery) in shrimp exposed to AgNP. In muscle, ACAP was induced in shrimp exposed to 100 μg/l AgNP (exposure). In the gills, there was an increase in TBARS in shrimp exposed to 100 μg/l AgNP (recovery). In the concentration of protein-associated sulfhydryl groups (P-SH), a decrease was observed in the hepatopancreas (recovery) in the 100 μg/l AgNP treatment. In chromaticity parameters, an increase in reddish tones was observed in shrimp exposed to 100 μg/l AgNP (recovery). An increase in granular hemocytes was verified in shrimp exposed to 25 and 400 μg/l AgNP during exposure. Tissues analyzed histologically showed normal patterns without apoptosis or necrosis processes, and after 30 d of recovery, only in one muscle sample of shrimp exposed to μg/l of AgNP was silver detected. It is concluded that a prophylactic action of short duration (3 h) mostly did not affected the welfare of shrimp L. vannamei and can be considered its use as a therapeutic strategy.
Collapse
Affiliation(s)
- Sonia Astrid Muñoz Buitrago
- Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Universidade Federal do Rio Grande - FURG, Instituto de Oceanografia (IO), Rio Grande, RS, Brazil
| | - Grecica Mariana Colombo
- Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Universidade Federal do Rio Grande - FURG, Instituto de Oceanografia (IO), Rio Grande, RS, Brazil
| | - Juan Rafael Buitrago
- Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Universidade Federal do Rio Grande - FURG, Instituto de Oceanografia (IO), Rio Grande, RS, Brazil
| | - Robson Matheus Marreiro Gomes
- Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Universidade Federal do Rio Grande - FURG, Instituto de Oceanografia (IO), Rio Grande, RS, Brazil
| | - Alan Carvalho de Sousa
- Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Universidade Federal do Rio Grande - FURG, Instituto de Oceanografia (IO), Rio Grande, RS, Brazil
| | - Virgínia Fonseca Pedrosa
- Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratório de Imunologia e Patologia de Organismos Aquáticos (LIPOA), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Luís Alberto Romano
- Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratório de Imunologia e Patologia de Organismos Aquáticos (LIPOA), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | | | - Franciele Rovasi Adolfo
- Universidade Federal de Santa Maria (UFSM), Instituto de Química Analítica, Rio Grande, RS, Brazil
| | - Wilson Wasielesky Junior
- Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratório de Carcinocultura, Universidade Federal do Rio Grande - FURG, Instituto de Oceanografia (IO), Rio Grande, RS, Brazil
| | - Marcelo Estrella Josende
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - José Maria Monserrat
- Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Universidade Federal do Rio Grande - FURG, Instituto de Oceanografia (IO), Rio Grande, RS, Brazil; Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
5
|
Liao ZH, Chuang HC, Huang HT, Wang PH, Chen BY, Lee PT, Wu YS, Nan FH. Bioaccumulation of arsenic and immunotoxic effect in white shrimp (Penaeus vannamei) exposed to trivalent arsenic. FISH & SHELLFISH IMMUNOLOGY 2022; 122:376-385. [PMID: 35181445 DOI: 10.1016/j.fsi.2022.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Trivalent arsenic (As (III)) contamination in the marine environment can produce adverse effects in crustaceans. The present study investigated the chronic toxicity of As (III) in white shrimp (Penaeus vannamei) by analyzing the tissue bioaccumulation and non-specific immune responses. Shrimps were exposed to 0 (control), 50, 500, and 2500 μg/L of As (III) for 21 days. The results showed that the hepatopancreas was the main tissue of arsenic accumulation in white shrimp. The cumulative concentration of total arsenic and inorganic arsenic but not arsenobetaine was positively correlated with the exposure concentration. In vitro As (III) treatment (0-2500 μg/L) with haemocytes isolated from healthy shrimp did not cause the cytotoxicity, but this arsenic treatments inhibited the phagocytic rate and O2- production. Moreover, the decrease of total haemocyte count and the inhibition of phagocytic rate, phagocytic index, O2- production and phenoloxidase activity were observed in white shrimp under the exposure of As (III) over a period of 21 days. This study revealed that chronic As (III) stress could disturb arsenic metabolism and immune responses in P. vannamei.
Collapse
Affiliation(s)
- Zhen-Hao Liao
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Hsiang-Chieh Chuang
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, No.142, Haijhuan Road., Nanzih District, Kaohsiung City, 81157, Taiwan
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Pei-Hsuan Wang
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Bo-Ying Chen
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Yu-Sheng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, No. 1, Xue-Fu Road, Neipu Township, Pingtung, 912301, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan.
| |
Collapse
|
6
|
Günal AÇ, Tunca SK, Arslan P, Gül G, Dinçel AS. How does sublethal permethrin effect non-target aquatic organisms? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52405-52417. [PMID: 34009577 DOI: 10.1007/s11356-021-14475-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Permethrin is belonged to pyrethroids that are one of the substances developed as an alternative to pesticides. Permethrin, which is used especially in agriculture, can bioaccumulate in the water and sediment when mixed into aquatic ecosystems. For this reason, it is necessary to investigate the effect of this substance on aquatic organisms other than the target organism. The aim of this study was the determination of acute and sublethal effects as antioxidant enzyme levels on different organs and hemolymph biochemistry of the non-target aquatic organism, narrow-clawed crayfish (Astacus leptodactylus), after exposure to permethrin, one of the synthetic pyrethroid pesticides, contaminating aquatic ecosystems due to its increase usage. The invertebrate model organism, the narrow-clawed crayfish, was selected for its bioindicator role in food webs as planktivorous grazers epibenthic scavengers and good alternative models in ecotoxicology studies with the importance in conservation of freshwater ecosystems. The 96-h LC50 value of permethrin to experimental species was estimated as 0.903 μg/L (95% CI = 0.5042-2.2734 μg/L) with probit analysis method. The sublethal concentration of the permethrin was determined by 1/10 of 96-h LC50 values as 0.09 μg/L. There were two control (negative and acetone) groups in the experiment. The sampling of hemolymph and the tissues (gills, hepatopancreas, and muscle) were done 48 h and 96 h after exposure of the permethrin. The total hemocyte counts significantly increased in the 96-h exposed group of permethrin (p<0.05). Among the hemolymph biochemical parameters, the hemolymph potassium and chloride values increased statistically (p<0.05). Malondialdehyde levels (MDA) of gills and muscle were significantly increased, whereas the MDA level of the hepatopancreas was significantly decreased at the end of the experiment (p<0.05). Hyperplasia in the lamella was recorded in gills, while the degenerations of the hepatopancreas tissues were observed. According to obtained results, permethrin was extremely toxic as acutely to narrow-clawed crayfish and also effected at sublethal concentrations.
Collapse
Affiliation(s)
- Aysel Çağlan Günal
- Graduate School of Natural and Applied Sciences, Environmental Sciences Department, Gazi University, Ankara, Turkey
| | - Seçil Kayiran Tunca
- Graduate School of Natural and Applied Sciences, Environmental Sciences Department, Gazi University, Ankara, Turkey
| | - Pınar Arslan
- Biology Department, Faculty of Science, Çankırı Karatekin University, 18200, Çankırı, Turkey.
| | - Göktuğ Gül
- Health Services Vocational School, Environmental Health and Environmental Sciences Program, Gazi University, Ankara, Turkey
| | | |
Collapse
|
7
|
Müller L, Nunes SM, Villar N, Gelesky M, Tavella RA, da Silva Junior FMR, Fattorini D, Regoli F, Monserrat JM, Ventura-Lima J. Genotoxic effect of dimethylarsinic acid and the influence of co-exposure to titanium nanodioxide (nTiO 2) in Laeonereis culveri (Annelida, Polychaeta). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:19-27. [PMID: 31170592 DOI: 10.1016/j.scitotenv.2019.05.259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Few data are available about the effect of dimethylated forms (DMA) on aquatic organisms. As rarely a contaminant occurs alone, studies evaluating the combined effect of different contaminants in aquatic organisms are needed. In fact, the presence of nanomaterials, such as titanium dioxide nanoparticles (nTiO2), in the aquatic environment is now a reality due to its intensive production and use. So, this study evaluated the toxicological effects of DMA in an acute exposure condition and considered the potential influence of nTiO2 on the effects induced by DMA in the polychaete, Laeonereis culveri. The animals were exposed over 48 h to DMA (50 and 500 μg/l) alone or in combination with nTiO2 (1 mg/l). Biochemical parameters such as concentration of reactive oxygen species (ROS), glutathione-S-transferase (GST) activity, levels of reduced glutathione levels (GSH) and macromolecular (lipid and DNA) damage were evaluated, as well the DNA repair system. In addition, the accumulation of total As and the chemical speciation of the metalloid in the organisms was determined. The results showed that: (1) only the group exposed to 500 μg of DMA/l accumulated As and when co-exposed to nTiO2, this accumulation was not observed. (2) The levels of ROS increased in the group exposed to 50 μg/l of DMA alone and the effect was reversed when this group was co-exposed to nTiO2 (3) None of the treatments showed altered GST activity or GSH levels. (4) All groups that received nTiO2 (alone or in combination with DMA) showed lipid peroxidation. (5) The exposure to DMA (both concentrations) alone or in combination with nTiO2 induced DNA damage in L. culveri. These results showed that DMA exhibits a genotoxic effect and that co-exposure to nTiO2 had an influence on its toxicity. So the occurrence of both contaminants simultaneously can represent a threat to aquatic biota.
Collapse
Affiliation(s)
- Larissa Müller
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil.
| | - Silvana Manske Nunes
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil
| | - Nágila Villar
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Marcos Gelesky
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Química Tecnológica e Ambiental-FURG, Brazil
| | | | - Flávio Manoel Rodrigues da Silva Junior
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde-FURG, Brazil
| | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - José Maria Monserrat
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil
| | - Juliane Ventura-Lima
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|