1
|
Hu X, Zhao S, Guo Z, Zhu Y, Zhang S, Li D, Shu G. Tetramethylpyrazine Antagonizes the Subchronic Cadmium Exposure-Induced Oxidative Damage in Mouse Livers via the Nrf2/HO-1 Pathway. Molecules 2024; 29:1434. [PMID: 38611714 PMCID: PMC11013177 DOI: 10.3390/molecules29071434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Hepatic oxidative stress is an important mechanism of Cd-induced hepatotoxicity, and it is ameliorated by TMP. However, this underlying mechanism remains to be elucidated. To investigate the mechanism of the protective effect of TMP on liver injuries in mice induced by subchronic cadmium exposure, 60 healthy male ICR mice were randomly divided into five groups of 12 mice each, namely, control (CON), Cd (2 mg/kg of CdCl2), Cd + 100 mg/kg of TMP, Cd + 150 mg/kg of TMP, and Cd + 200 mg/kg of TMP, and were acclimatized and fed for 7 d. The five groups of mice were gavaged for 28 consecutive days with a maximum dose of 0.2 mL/10 g/day. Except for the control group, all groups were given fluoride (35 mg/kg) by an intraperitoneal injection on the last day of the experiment. The results of this study show that compared with the Cd group, TMP attenuated CdCl2-induced pathological changes in the liver and improved the ultrastructure of liver cells, and TMP significantly decreased the MDA level (p < 0.05) and increased the levels of T-AOC, T-SOD, and GSH (p < 0.05). The results of mRNA detection show that TMP significantly increased the levels of Nrf2 in the liver compared with the Cd group as well as the HO-1 and mRNA expression levels in the liver (p < 0.05). In conclusion, TMP could inhibit oxidative stress and attenuate Cd group-induced liver injuries by activating the Nrf2 pathway.
Collapse
Affiliation(s)
- Xue Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (S.Z.); (Z.G.); (Y.Z.); (S.Z.)
| | - Siqi Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (S.Z.); (Z.G.); (Y.Z.); (S.Z.)
| | - Ziming Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (S.Z.); (Z.G.); (Y.Z.); (S.Z.)
| | - Yiling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (S.Z.); (Z.G.); (Y.Z.); (S.Z.)
| | - Shuai Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (S.Z.); (Z.G.); (Y.Z.); (S.Z.)
| | - Danqin Li
- College of Veterinary Medicine, Kansas State University, 1700 Denison Ave., Manhattan, KS 66502, USA
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (S.Z.); (Z.G.); (Y.Z.); (S.Z.)
| |
Collapse
|
2
|
Chatturong U, Palang I, To-On K, Deetud W, Chaiwong S, Sakulsak N, Sonthi P, Chanasong R, Chulikorn E, Kanprakobkit W, Wittaya-Areekul S, Kielar F, Chootip K. Reduction of lauric acid content in virgin coconut oil improved plasma lipid profile in high-fat diet-induced hypercholesterolemic mice. J Food Sci 2023; 88:4305-4315. [PMID: 37602794 DOI: 10.1111/1750-3841.16741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/16/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
Virgin coconut oil (VCO) is claimed to have various health benefits, but favorable effects of its major component (∼50%), lauric acid, are controversial. Therefore, we aimed to reduce lauric acid content (∼30%) in VCO and evaluate its effect compared to VCO and medium-chain triglycerides (MCT), on food intake, bodyweight (BW), lipid profiles, and hepatic histology. Female C57BL/6 mice were treated with different diets for 3 months: control (normal diet), high-fat diet (HF), HF + VCO, HF + MCT, HF + low lauric acid VCO (LLA), and normal diet + LLA (C + LLA). LLA was prepared by enzymatic interesterification of VCO with methyl octanoate (methyl caprylate) and methyl decanoate (methyl caprate). Plasma and liver lipids, including total cholesterol (TC), high-density lipoprotein (HDL), and triglyceride, were measured by colorimetric assay, and hepatic fat accumulation was examined by oil-red-O staining. HF mice exhibited high plasma and liver TC and low-density lipoprotein (LDL). VCO or MCT treatment lowered liver TC and LDL, whereas LLA increased plasma HDL and markedly improved TC:HDL ratio. The HF-induced hepatic fat accumulation was attenuated by all treatments, of which VCO was the most effective. Control mice administered with LLA demonstrated lower liver TC and LDL, but higher plasma TC and HDL compared to controls. Lowest BW gain and food intake were found in mice treated with LLA. In conclusion, VCO, MCT, and LLA ameliorated hepatic histopathology caused by HF. VCO and MCT improved liver lipid profiles, whereas LLA has more beneficial effect on plasma lipids via a better TC:HDL ratio and showed promise for BW control.
Collapse
Affiliation(s)
- Usana Chatturong
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Iyapa Palang
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Kittiwoot To-On
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Watcharakorn Deetud
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Suriya Chaiwong
- Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi Rangsit Centre, Pathum Thani, Thailand
| | - Natthiya Sakulsak
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Phattarapon Sonthi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Rachanee Chanasong
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Ekarin Chulikorn
- Department of Biochemistry, Faculty of Medical Science and Center of Excellence in Biomaterials, Naresuan University, Phitsanulok, Thailand
| | - Winranath Kanprakobkit
- Department of Chemistry, Faculty of Science and Center of Excellence in Biomaterials, Naresuan University, Phitsanulok, Thailand
| | - Sakchai Wittaya-Areekul
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Filip Kielar
- Department of Chemistry, Faculty of Science and Center of Excellence in Biomaterials, Naresuan University, Phitsanulok, Thailand
| | - Krongkarn Chootip
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
3
|
Chen Y, Lin Q, Wang J, Mu J, Liang Y. Proteins, polysaccharides and their derivatives as macromolecular antioxidant supplements: A review of in vitro screening methods and strategies. Int J Biol Macromol 2022; 224:958-971. [DOI: 10.1016/j.ijbiomac.2022.10.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
4
|
The mechanism of the cadmium-induced toxicity and cellular response in the liver. Toxicology 2022; 480:153339. [PMID: 36167199 DOI: 10.1016/j.tox.2022.153339] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 01/22/2023]
Abstract
Cadmium is a toxic element to which man can be exposed at work or in the environment. Cd's most salient toxicological property is its exceptionally long half-life in the human body. Once absorbed, Cd accumulates in the human body, particularly in the liver. The cellular actions of Cd are extensively documented, but the molecular mechanisms underlying these actions are still not resolved. The liver manages the cadmium to eliminate it by a diverse mechanism of action. Still, many cellular and physiological responses are executed in the task, leading to worse liver damage, ranging from steatosis, steatohepatitis, and eventually hepatocellular carcinoma. The progression of cadmium-induced liver damage is complex, and it is well-known the cellular response that depends on the time in which the metal is present, ranging from oxidative stress, apoptosis, adipogenesis, and failures in autophagy. In the present work, we aim to present a review of the current knowledge of cadmium toxicity and the cellular response in the liver.
Collapse
|
5
|
Zeng YQ, He JT, Hu BY, Li W, Deng J, Lin QL, Fang Y. Virgin coconut oil: A comprehensive review of antioxidant activity and mechanisms contributed by phenolic compounds. Crit Rev Food Sci Nutr 2022; 64:1052-1075. [PMID: 35997296 DOI: 10.1080/10408398.2022.2113361] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Virgin coconut oil (VCO) is obtained by processing mature coconut cores with mechanical or natural methods. In recent years, VCO has been widely used in the food, pharmaceutical, and cosmetic industries because of its excellent functional activities. VCO has biological functions such as antioxidant, anti-inflammatory, antibacterial, and antiviral, and also has potential therapeutic effects on many chronic degenerative diseases. Among these functions, the antioxidant is the most basic and important function, which is mainly determined by phenolic compounds and medium-chain fatty acids (MCFAs). This review aims to elucidate the antioxidant functions of each phenolic compound in VCO, and discuss the antioxidant mechanisms of VCO in terms of the role of phenolic compounds with fat, intestinal microorganisms, and various organs. Besides, the composition of VCO and its application in various industries are summarized, and the biological functions of VCO are generalized, which should lay a foundation for further research on the antioxidant activity of VCO and provide a theoretical basis for the development of food additives with antioxidant activity.
Collapse
Affiliation(s)
- Yu-Qing Zeng
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jin-Tao He
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Bo-Yong Hu
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Wen Li
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jing Deng
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Qin-Lu Lin
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yong Fang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
6
|
Sireswar S, Dey G, Biswas S. Influence of fruit-based beverages on efficacy of Lacticaseibacillus rhamnosus GG (Lactobacillus rhamnosus GG) against DSS-induced intestinal inflammation. Food Res Int 2021; 149:110661. [PMID: 34600663 DOI: 10.1016/j.foodres.2021.110661] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Different lines of evidences from clinical, epidemiological and biochemical studies have established that optimal nutrition including probiotic and fruit phenolics can mitigate the risk and morbidity associated with some chronic diseases. The basis for this observation is the potential synergies that may exist between probiotic strains and different bioactive components of food matrices. This study was conceptualized to compare the efficiency of a probiotic strain in two different fruit matrices. Two fruits, viz., sea buckthorn (Hippophae rhamnoides) (SBT) and apples (Malus pumila) (APJ) were chosen and the anti-inflammatory effects of L. rhamnosus GG (ATCC 53103) (LR) fortified in SBT and APJ were analysed against dextran sulphate sodium (DSS) induced colitis in zebrafish (Danio rerio). The results showed that administration of probiotic (LR) fortified, malt supplemented SBT beverage (SBT + M + LR) had better restorative potential on the intestinal barrier function and mucosal damage, in comparison to LR fortified, malt supplemented APJ beverage (APJ + M + LR). SBT + M + LR demonstrated adequate anti-oxidant potential by enhancing the CAT, SOD, GPx and GSH activities, impaired due to DSS administration. The increase in the expressions of toll like receptor (TLR)-2, TLR-4 and TLR-5 induced by DSS were significantly inhibited by SBT + M + LR administration. Gene expression of pro-inflammatory markers, (NF-κB, TNF-α, IL-1β, IL-6, IL-8, CCL20, MPO and MMP9) were attenuated by SBT + M + LR treatment in intestinal tissues of DSS-treated zebrafishes. Notably, SBT + M + LR increased the expression of anti-inflammatory cytokine, IL-10. The study provides evidence that specific interactions between fruit matrix and probiotic strain can provide adjunct therapeutic strategy to manage intestinal inflammation.
Collapse
Affiliation(s)
- Srijita Sireswar
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Patia, Bhubaneswar, Odisha 751024. India
| | - Gargi Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Patia, Bhubaneswar, Odisha 751024. India.
| | - Sutapa Biswas
- Care Hospital, Chandrasekharpur, Bhubaneswar, Odisha 751016, India
| |
Collapse
|
7
|
Akinmoladun AC, Aladesanmi OO, Ojo FE, Bello M, Taiwo BJ, Akindahunsi AA. Modifying influence of polyphenols on hematotoxicity, cardiotoxicity, and hepatotoxicity induced by liquefied petroleum gas in rats. Toxicol Res (Camb) 2021; 10:751-760. [PMID: 34484666 DOI: 10.1093/toxres/tfab058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/02/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
Objective This study was designed to investigate the effects of liquefied petroleum gas (LPG) on hematotoxic, cardiotoxic, and hepatotoxic indices and the modifying influence of selected polyphenols. Methods Adult male Wistar rats were exposed to1000 ppm LPG for 10 min at 12-h interval for 30 days with or without cotreatment with 50 mg/kg rutin, quercetin, tannic acid, or gallic acid followed by hematological, biochemical, and histopathological evaluations in animal tissues. Results Exposure to LPG induced hematotoxicity, cardiotoxicity, and hepatotoxicity. This is reflected in alterations to levels or activities of blood parameters (hemoglobin, packed cell volume, red blood cells, mean corpuscular volume, mean corpuscular hemoglobin, and platelets), enzymatic and nonenzymatic oxidative stress markers, nitrite, lactate dehydrogenase, creatine kinase-MB, transaminases, γ-glutamyl transpeptidase, bilirubin, and plasma albumin. LPG exposure also caused dyslipidemia and histoarchitectural changes. Treatment with the selected polyphenols effectively attenuated LPG-induced toxicity in rat tissues. Conclusion The results indicate that continuous exposure to LPG could lead to blood-, heart-, and liver-related diseases and dietary polyphenols could provide benefits in diseases associated with LPG inhalation toxicity.
Collapse
Affiliation(s)
| | - Olayinka Oluwaseun Aladesanmi
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure 340001, Nigeria
| | - Femi Emmanuel Ojo
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure 340001, Nigeria
| | - Morenikejimi Bello
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure 340001, Nigeria
| | - Bobola Jeremiah Taiwo
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure 340001, Nigeria
| | - Afolabi Akintunde Akindahunsi
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure 340001, Nigeria
| |
Collapse
|
8
|
Aladesanmi OO, Akinmoladun AC, Josiah SS, Olaleye MT, Akindahunsi AA. Modulatory activities of polyphenols on crude acetylene-induced cardiac and hepatic dysfunctions in a rat model. Drug Chem Toxicol 2020; 45:1670-1678. [PMID: 33292030 DOI: 10.1080/01480545.2020.1853766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Exposure to crude acetylene can occur in occupational settings. This study assessed the modulatory activities of selected polyphenols on the hematotoxic, cardiotoxic, and hepatotoxic effects of crude acetylene. Wistar rats were exposed to 58 000 ppm crude acetylene for 10 min at 12 h intervals for 30 days. Some exposed groups were treated with 50 mg/kg rutin, quercetin, gallic acid, or tannic acid. Indices of hematological disorder, oxidative stress, and cardiovascular and hepatocellular injuries were evaluated in animals. The results showed a decrease in the levels of hematological indices in crude acetylene-exposed animals except for white blood cell count which was increased. Decreased activity/level of reduced glutathione, superoxide dismutase and ferric reducing antioxidant power with increased lipid peroxidation was observed in animals exposed to crude acetylene. Activities of transaminases, γ-glutamyl transpeptidase, and level of bilirubin were increased while the plasma albumin level was decreased. Dyslipidemia, increased activities of lactate dehydrogenase and creatine kinase-MB, and severe histopathological damage to hepatic and cardiac tissues were also observed in animals exposed to the gas. These deleterious hematological, biochemical, and histopathological changes were ameliorated in crude acetylene-toxified rats treated with the polyphenols. Tannic acid exhibited better activity than gallic acid while quercetin showed a superior activity to rutin. The results indicate that exposure to crude acetylene can lead to blood, heart, and liver-related diseases and dietary polyphenols could provide protective benefits.
Collapse
Affiliation(s)
- Olayinka O Aladesanmi
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, Nigeria
| | - Afolabi C Akinmoladun
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, Nigeria
| | - Sunday S Josiah
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, Nigeria
| | - Mary T Olaleye
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, Nigeria
| | - Afolabi A Akindahunsi
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
9
|
Narayanankutty A, Illam SP, Rao V, Shehabudheen S, Raghavamenon AC. Hot-processed virgin coconut oil abrogates cisplatin-induced nephrotoxicity by restoring redox balance in rats compared to fermentation-processed virgin coconut oil. Drug Chem Toxicol 2020; 45:1373-1382. [PMID: 33059468 DOI: 10.1080/01480545.2020.1831525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Virgin coconut oil (VCO) is a functional food oil prepared from fresh coconut kernel either by hot-processed (HPVCO) or fermentation-processed (FPVCO). The FPVCO has been widely explored for its pharmacological efficacy; while HPVCO, which has traditional uses, is less explored. The present study compared the phenolic content and nephroprotective effect of both these oils in male Wistar rats. In vitro antioxidant activity was estimated in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing antioxidant power and ex vivo lipid peroxidation inhibition. In in vivo models, the rats were pretreated orally with of FPVCO or HPVCO (doses 2 and 4 mL/kg) for seven days and nephrotoxicity was induced by the single intraperitoneal injection of cisplatin (10 mg/kg). The results indicated significantly higher polyphenol content in HPVCO (400.3 ± 5.8 µg/mL) than that of FPVCO (255.5 ± 5.8 µg/mL). Corroborating with the increased levels of polyphenols, the in vitro antioxidant potential was significantly higher in the HPVCO. Further, pretreatment with these VCO preparations protected the rats against the cisplatin-induced nephrotoxicity, with higher extent by HPVCO. The renal function markers like urea, creatinine and total bilirubin were significantly reduced (p < 0.05) with HPVCO pretreatment. Apart from the nephroprotective effects, HPVCO also abrogated the cisplatin-induced myelosuppression and hepatotoxicity. The restoration of hepato-renal function by the pretreatment of HPVCO was well corroborated with the improvement in functional antioxidants and subsequent reduction in renal lipid peroxidation. Supporting these observations, renal histology revealed reduced glomerular/tubular congestion and necrosis. Thus, the study concludes that HPVCO may be better functional food than FPVCO.
Collapse
Affiliation(s)
| | | | - Varsha Rao
- Department of Biochemistry, Amala Cancer Research Centre, Thrissur, India
| | - Sabah Shehabudheen
- Department of Biochemistry, Amala Cancer Research Centre, Thrissur, India
| | | |
Collapse
|
10
|
Serrano A, González-Sarrías A, Tomás-Barberán FA, Avellaneda A, Gironés-Vilaplana A, Nieto G, Ros-Berruezo G. Anti-Inflammatory and Antioxidant Effects of Regular Consumption of Cooked Ham Enriched with Dietary Phenolics in Diet-Induced Obese Mice. Antioxidants (Basel) 2020; 9:E639. [PMID: 32708089 PMCID: PMC7402095 DOI: 10.3390/antiox9070639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
Oxidative damage and chronic inflammation have been proven as one of the major factors associated with obesity, which increases the incidence of non-communicable chronic diseases. In this sense, the development of new functional products aiming at the palliation of oxidative stress and inflammatory disruption can be a determining factor for public health as seen in previous researches. In this study, a blend of potentially bioavailable dietary phenolics was added to low sodium and low-fat cooked ham. A diet-induced obesity model in C57/BL6J mice has been used for testing the effectiveness of the phenolic blend and the new functionalized product, which bioavailability was tested by UPLC-ESI-QTOF-MS. After obesity induction, different oxidative and inflammatory biomarkers were evaluated. Results in the murine induced obesity model, demonstrate a robust statistically significant improvement in key parameters related with obesity risk in the groups feed with a phenolic-enriched diets (P) + high-fat diet (HFD) and phenolic enriched cooked ham (PECH) + HFD. In both groups there was an improvement in body composition parameters, inflammatory biomarkers and antioxidant enzymes levels. Specifically in the group feed with the phenolic enriched cooked ham (PECH + HFD) there was an improvement of total fat volume (23.08% reduction), spleen index (22.04% of reduction), plasmatic MCP-1 (18% reduction), IL-6 (38.94% reduction), IL-10 (13.28% reduction), TNF-α (21.32% reduction), gut IL-1β (10.86% reduction), gut IL-6 (13.63% reduction) and GPx (60.15% increase) and catalase (91.37% increase) enzymes. Thus, the functionalized ham could be considered an appropriate dietary polyphenol source, which might improve the oxidative and inflammatory status and could finally result in the potential decrease of the risk of certain non-communicable chronic diseases.
Collapse
Affiliation(s)
- Antonio Serrano
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus de Espinardo, Espinardo, 30100 Murcia, Spain
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes-Universidad de Murcia, 30003 Murcia, Spain
| | - Antonio González-Sarrías
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | - Francisco A Tomás-Barberán
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | - Antonio Avellaneda
- R&D Department, ElPozo Alimentación S.A., Alhama de Murcia, 30840 Murcia, Spain
| | | | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus de Espinardo, Espinardo, 30100 Murcia, Spain
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes-Universidad de Murcia, 30003 Murcia, Spain
| | - Gaspar Ros-Berruezo
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus de Espinardo, Espinardo, 30100 Murcia, Spain
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes-Universidad de Murcia, 30003 Murcia, Spain
| |
Collapse
|
11
|
Yan Y, Jun C, Lu Y, Jiangmei S. Combination of metformin and luteolin synergistically protects carbon tetrachloride-induced hepatotoxicity: Mechanism involves antioxidant, anti-inflammatory, antiapoptotic, and Nrf2/HO-1 signaling pathway. Biofactors 2019; 45:598-606. [PMID: 31336028 DOI: 10.1002/biof.1521] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
Abstract
Liver diseases are one of the fatal disorders due to the vital role of the liver. Carbon tetrachloride (CCl4 ) is the most perceived chemical substance utilized in developing models of hepatic damage. Metformin (Met) is a potent antidiabetic and redox modulatory agent that has shown anticancer and protective effects on various organs. Therefore, addition of therapy with natural antioxidative agents or herbal extracts shows defensive impacts against different injuries inside the body. Luteolin (Lut) can be found in several customary Chinese remedies. It has been reported for various pharmacological actions such as antitumor, antioxidative, and anti-inflammatory impacts. Here, the liver injury rat model was established using CCl4 (1.00 mL/kg body weight) in vivo. The protective roles of Met and Lut separately or in combination were observed in hepatotoxicity induced by CCl4 . The result was shown that both Met and Lut, while individually used, were normally active in diminishing CCl4 -caused hepatotoxicity. The combination of two drugs performed synergistically to improve liver damage caused by CCl4 , as shown by the considerably improved liver dysfunction. Met and Lut showed highly antioxidative effects on CCl4 -treated rats moderately by increasing the activities and expression of the antioxidant enzymes. Along with this, a combination of Met and Lut significantly suppressed inflammatory responses, which is evidenced by the reduced level of inflammatory cytokines together with interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6). Additionally, CCl4 -agitated apoptosis was intensely reduced by Met and Lut through reducing cleaved caspase-3 and Bax (pro-apoptotic factor) while increasing Bcl-2 (antiapoptotic factor) signaling pathways. Cotreatments of Met and Lut upregulated nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1) expression in the CCl4 -intoxicated rat's liver. The above result recommended that combination of Met and Lut may have a substantial potential and synergizing impact against CCl4 -induced hepatotoxicity.
Collapse
Affiliation(s)
- Yang Yan
- Department of Digestive Medicine, Hefei Second People's Hospital, Hefei, China
| | - Chen Jun
- Department of Digestive Medicine, Hefei Second People's Hospital, Hefei, China
| | - Yang Lu
- Department of Digestive Medicine, Hefei Second People's Hospital, Hefei, China
| | - Song Jiangmei
- Department of Internal Medicine, CAS Cancer Hospital, Hefei, China
| |
Collapse
|